首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An animal can only survive in a given habitat if it has enough time to find, process and digest food whilst avoiding predation. The time it has for food acquisition is affected by the vegetation and competition with conspecifics, which depends on aggregation tendencies. We used the relationships between time allocations, on the one hand, and climatic variables (as a proxy for habitat quality) and group size, on the other, to develop a model that predicts maximum ecologically tolerable group size at different locations for spider monkeys. Spider monkeys are particularly interesting because the social communities often split up into small units. Temperature variation and rainfall variation were the main determinants of time budgets. Community size and average annual rainfall determined party size. The model correctly predicted presence or absence of spider monkeys at 78–83% of 217 New World forest sites. Within the geographical range of the species, this time budget model predicted the presence of spider monkeys better than a model based directly on climate variables. Predicted community and party sizes were significantly larger at sites where spider monkeys are present than at sites where they are absent. As required by the model, predicted maximum community sizes were significantly larger than observed community sizes. Moving time showed a U-shaped relationship with party size, which suggests that moving time is the factor that keeps spider monkey communities from travelling together in a tight group.  相似文献   

2.
Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.  相似文献   

3.
Maternal investment in mountain baboons and the hypothesis of reduced care   总被引:4,自引:1,他引:3  
It has been argued that female mammals should terminate expensive forms of infant care earlier as habitat quality declines. More recently it has been shown that among a variety of mammalian species, early termination of care is also associated with highly favourable conditions. In this paper we present data on maternal investment decisions among baboons (Papio cynocephalus ursinus) inhabiting the Drakensberg Mountains of South Africa, and compare these with data from East African baboon studies. Mothers in the mountain habitat face a set of environmental conditions where the problem of resource allocation to offspring is expected to be particularly acute. We begin by using the model of Altmann (1980) of maternal time budgets to demonstrate that mountain baboon mothers experience greater perturbations to their activity budgets while suckling than do mothers in other populations. They also provide consistently greater levels of care to their infants and do so in the absence of any form of overt conflict over access to the nipple. Although this investment results in a relative lengthening of the interbirth interval (IBI), it is accompanied by relatively higher infant survival. We argue that factors that influence the maternal strategy adopted by mountain baboons include slow infant growth rates and a lack of predation in the habitat which influences probability of offspring survival beyond the immediate postnatal period. We suggest that both “care-dependent” sources of mortality (e.g. female reproductive condition, the amount of milk transferred to offspring) as well as “care independent” sources of mortality (e.g. predation, infectious disease) should be considered in studies of parental investment. Received: 26 May 1997 / Accepted after revision: 9 August 1997  相似文献   

4.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

5.
Preston KL  Rotenberry JT 《Ecology》2006,87(1):160-168
We investigated the relative importance and interaction of ecological processes affecting annual fecundity in birds by simultaneously manipulating food availability and nest predation risk in a small songbird, the Wrentit (Chamaea fasciata). From 2000 to 2002 we provided supplemental food to individual Wrentit territories, and during 2002 we altered nest predation risk by providing supplemental food to their principal predators, Western Scrub-Jays (Aphelocoma californica). These experiments were conducted during a period of high interannual variation in rainfall, with 2002 being one of the driest years on record. Food-supplemented Wrentits in a normal predation environment produced an average of 0.54 more fledglings per year than control pairs over the three breeding seasons. During the feeding plus predation manipulation experiment, Wrentit food supplementation and lowered nest predation risk each independently increased the probability that a Wrentit pair would fledge young; however, the interaction between food supplementation and altered nest predation risk was not significant. Thus, even in an extreme drought year, both food and nest predation had equal but independent effects on reproductive success and annual fecundity. Combining supplemental food with reduced nest predation did not result in a synergistic increase in annual fecundity, primarily because Wrentits did not produce multiple broods. Our results suggest that whether food and predation have additive or synergistic effects on reproductive success depends on the life history of the species and the environment in which they live.  相似文献   

6.
Previous studies indicate that when predation risk is uniform across habitats, foragers concentrate their exploitation in fewer patches. Although uniform predation risk may seem rare in nature, some scenarios might cause it. Testing all scenarios in a single experiment is unfeasible; therefore, we developed a model that points whether concentration of exploitation in specific habitats due to uniform risk requires parameter values similar to what is found in literature. This model was based on Brown’s (Behav Ecol Sociobiol 22:37–47, 1988) fitness function but rescaled to multiple habitats and predators, including uniform risk predators. Deriving function’s maximum allowed comparisons with giving-up density studies. Results showed that uniform predation risk had a u-shaped effect in habitat exploitation, causing a concentration of habitat exploitation at probabilities of survival from 0.2 to 0.8. However, the length of this interval and degree of concentration depended on the value of safety to forager fitness. Heterogeneous, nonuniform, predation risk decreases habitat exploitation where it was higher, therefore suppressing the effect of uniform risk on prey behavior. Time spent in the focal habitat and metabolic costs reduced the detectability of habitat concentration, while total time did not. We also found that uniform risk reduced accuracy of heterogeneous risk measurements. Future studies should aim to control all possible predators, as even the mild ones can induce complex behavior.  相似文献   

7.
The risk of predation drives many behavioral responses in prey. However, few studies have directly tested whether predation risk alters the way other variables influence prey behavior. Here we use information theory (Akaike’s Information Criterion, AICc) in a novel way to test the hypothesis that the decision-making rules governing elk behavior are simplified by the presence of wolves. With elk habitat use as the dependent variable, we test whether the number of independent variables (i.e., the size of the models) that best predict this behavior differ when wolves are present vs absent. Thus, we use AICc scores simply to determine the number of variables to which elk respond when making decisions. We measured habitat use using 2,288 locations from GPS collars on 14 elk, over two winters (14 elk winters), in the Gallatin Canyon portion of the Greater Yellowstone Ecosystem. We found that the use of three major habitat components (grass, conifer, sage) was sensitive to many variables on days that wolves were locally absent, with the best models (ΔAICc≤2) averaging 7.4 parameters. In contrast, habitat use was sensitive to few variables on days when wolves were present: the best models averaged only 2.5 parameters. Because fewer variables affect elk behavior in the presence of wolves, we conclude that elk use simpler decision-making rules in the presence of wolves. This simplification of decision-making rules implies that predation risk imposes selection pressures that do not allow prey to respond to other pressures in ways that they otherwise would. If the affected processes are important, then this indirect effect of predation is likely to be important.  相似文献   

8.
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.  相似文献   

9.
Bize P  Devevey G  Monaghan P  Doligez B  Christe P 《Ecology》2008,89(9):2584-2593
Major life history traits, such as fecundity and survival, have been consistently demonstrated to covary positively in nature, some individuals having more resources than others to allocate to all aspects of their life history. Yet, little is known about which resources (or state variables) may account for such covariation. Reactive oxygen species (ROS) are natural by-products of metabolism and, when ROS production exceeds antioxidant defenses, organisms are exposed to oxidative stress that can have deleterious effects on their fecundity and survival. Using a wild, long-lived bird, the Alpine Swift (Apus melba), we examined whether individual red cell resistance to oxidative stress covaried with fecundity and survival. We found that males that survived to the next breeding season tended to be more resistant to oxidative stress, and females with higher resistance to oxidative stress laid larger clutches. Furthermore, the eggs of females with low resistance to oxidative stress were less likely to hatch than those of females with high resistance to oxidative stress. By swapping entire clutches at clutch completion, we then demonstrated that hatching failure was related to the production of low-quality eggs by females with low resistance to oxidative stress, rather than to inadequate parental care during incubation. Although male and female resistance to oxidative stress covaried with age, the relationships among oxidative stress, survival, and fecundity occurred independently of chronological age. Overall, our study suggests that oxidative stress may play a significant role in shaping fecundity and survival in the wild. It further suggests that the nature of the covariation between resistance to oxidative stress and life history traits is sex specific, high resistance to oxidative stress covarying primarily with fecundity in females and with survival in males.  相似文献   

10.
Brood desertion is a life history strategy that allows parents to minimize costs related to parental care and increase their future fecundity. The harvestman Neosadocus maximus is an interesting model organism to study costs and benefits of temporary brood desertion because females abandon their clutches periodically and keep adding eggs to their clutches for some weeks. In this study, we tested if temporary brood desertion (a) imposes a cost to caring females by increasing the risk of egg predation and (b) offers a benefit to caring females by increasing fecundity as a result of increased foraging opportunities. With intensive field observations followed by a model selection approach, we showed that the proportion of consumed eggs was very low during the day and it was not influenced by the frequency of brood desertion. The proportion of consumed eggs was higher at night and it was negatively related to the frequency of brood desertion. However, frequent brood desertion did not result in higher fecundity, measured both as the number of eggs added to the current clutch and the probability of laying a second clutch over the course of the reproductive season. Considering that harvestmen are sensitive to dehydration, brood desertion during the day may attenuate the physiological stress of remaining exposed on the vegetation. Moreover, since brood desertion is higher during the day, when egg predation pressure is lower, caring females could be adjusting their maternal effort to the temporal variation in predation risk, which is regarded as the main cost of brood desertion in ectotherms.  相似文献   

11.
Abstract: Crayfishes are both a highly imperiled invertebrate group as well as one that has produced many invasive species, which have negatively affected freshwater ecosystems throughout the world. We performed a trait analysis for 77 crayfishes from the southeastern United States in an attempt to understand which biological and ecological traits make these species prone to imperilment or invasion, and to predict which species may face extinction or become invasive in the future. We evaluated biological and ecological traits with principal coordinate analysis and classification trees. Invasive and imperiled crayfishes occupied different positions in multivariate trait space, although crayfishes invasive at different scales (extraregional vs. extralimital) were also distinct. Extraregional crayfishes (large, high fecundity, habitat generalists) were most distinct from imperiled crayfishes (small, low fecundity, habitat specialists), thus supporting the “two sides of the same coin” hypothesis. Correct classification rates for assignment of crayfishes as invasive or imperiled were high (70–80%), even when excluding the highly predictive but potentially confounding trait of range size (75–90%). We identified a number of species that, although not currently listed as imperiled or found outside their native range, possess many of the life‐history and ecological traits characteristic of currently invasive or imperiled taxa. Such species exhibit a high latent risk of extinction or invasion and consequently should be the focus of proactive conservation or management strategies. Our results illustrate the utility of trait‐based approaches for taxonomic groups such as invertebrates, for which detailed species‐specific data are rare and conservation resources are chronically limited.  相似文献   

12.
The reintroduction of large predators provides a framework to investigate responses by prey species to predators. Considerable research has been directed at the impact that reintroduced wolves (Canis lupus) have on cervids, and to a lesser degree, bovids, in northern temperate regions. Generally, these impacts alter feeding, activity, and ranging behavior, or combinations of these. However, there are few studies on the response of African bovids to reintroduced predators, and thus, there is limited data to compare responses by tropical and temperate ungulates to predator reintroductions. Using the reintroduction of lion (Panthera leo) into the Addo Elephant National Park (AENP) Main Camp Section, South Africa, we show that Cape buffalo (Syncerus caffer) responses differ from northern temperate ungulates. Following lion reintroduction, buffalo herds amalgamated into larger, more defendable units; this corresponded with an increase in the survival of juvenile buffalo. Current habitat preference of buffalo breeding herds is for open habitats, especially during the night and morning, when lion are active. The increase in group size and habitat preference countered initial high levels of predation on juvenile buffalo, resulting in a return in the proportion of juveniles in breeding herds to pre-lion levels. Our results show that buffalo responses to reintroduced large predators in southern Africa differ to those of northern temperate bovids or cervids in the face of wolf predation. We predict that the nature of the prey response to predator reintroduction is likely to reflect the trade-off between the predator selection and hunting strategy of predators against the life history and foraging strategies of each prey species.  相似文献   

13.
The simultaneous presence of predators and a limited time for development imposes a conflict: accelerating growth under time constraints comes at the cost of higher predation risk mediated by increased foraging. The few studies that have addressed this tradeoff have dealt only with life history traits such as age and size at maturity. Physiological traits have largely been ignored in studies assessing the impact of environmental stressors, and it is largely unknown whether they respond independently of life history traits. Here, we studied the simultaneous effects of time constraints, i.e., as imposed by seasonality, and predation risk on immune defense, energy storage, and life history in lestid damselflies. As predicted by theory, larvae accelerated growth and development under time constraints while the opposite occurred under predation risk. The activity of phenoloxidase, an important component of insect immunity, and investment in fat storage were reduced both under time constraints and in the presence of predators. These reductions were smaller when time constraints and predation risk were combined. This indicates that predators can induce sublethal costs linked to both life history and physiology in their prey, and that time constraints can independently reduce the impact of predator-induced changes in life history and physiology.  相似文献   

14.
A Habitat-Based Metapopulation Model of the California Gnatcatcher   总被引:5,自引:0,他引:5  
We present an analysis of the metapopulation dynamics of the federally threatened coastal California Gnatcatcher (Polioptila c. californica) for an approximately 850 km2 region of Orange County, California. We developed and validated a habitat suitability model for this species using data on topography, vegetation, and locations of gnatcatcher pair observations. Using this habitat model, we calculated the spatial structure of the metapopulation, including size and location of habitat patches and the distances among them. We used data based on field studies to estimate parameters such as survival, fecundity, dispersal, and catastrophes, and combined these parameters with the spatial structure to build a stage-structured, stochastic, spatially-explicit metapopulation model. The model predicted a fast decline and high risk of population extinction with most combinations of parameters. Results were most sensitive to density-dependent effects, the probability of weather-related catastrophes, adult survival, and adult fecundity. Based on data used in the model, the greatest difference in results was given when the simulation's time horizon was only a few decades, suggesting that modeling based on longer or shorter time horizons may underestimate the effects of alternative management actions.  相似文献   

15.
Dynamical models usually assume that predation occurs between mature stages and/or between mature and immature stages. In this work a stage-structured discrete time model is developed for a system where intraguild predation takes place only in the course of immature stages of predator and its prey. Therefore, the proposed mathematical setup demands functional relations linking predation in immature life stages with survival and fecundity in mature stages. The behavior of the model is examined in order to investigate the interplay among predator attack rate, its satiation of prey consumption and the success of intraguild predator invasion.  相似文献   

16.
We surveyed patterns in the relative abundance and size structure of the sea stars Pisaster ochraceus and Evasterias troschelii in five habitat types of varying structural complexity and prey availability (sand/cobble, boulder, and rocky intertidal; pilings; and floating docks) in Puget Sound and the San Juan Islands, Washington. For both species, small sea stars were most abundant in the most structurally complex habitat type (boulder), where they occurred almost exclusively under boulders during low tide. Larger individuals became more abundant as structural complexity decreased, occurring more frequently in open habitat types (rocky shores, pilings, and docks) known to have greater abundances of prey resources. Gull foraging observations and experiments demonstrated that exposed small sea stars of both species were highly vulnerable to predation, suggesting that small sea stars require structural complexity (crevice microhabitat) as a predation refuge. Large sea stars, once attaining a size refuge from predation, appear to migrate to more exposed habitat types with more abundant food resources. These results suggest parallel ontogenetic habitat shifts in two co-occurring consumer species related to a shared predation risk at early life stages and demonstrate how the relative importance of top-down and bottom-up processes may differ with ontogeny.  相似文献   

17.
In field surveys, laboratory observations and field-based assays of behavior, I examined the effects of size-dependent predation risk on the interaction between size at reproductive maturity and maternal care behavior in the stream-dwelling isopod, Lirceus fontinalis. L. fontinalis exhibit population-specific sizes at reproductive maturity which result in population differences in predation risk during the adult phase. Females from streams containing salamander larvae (that prefer small prey) mature at large sizes and then become relatively safe from predation. Females from streams containing fish (that consume all size classes of prey equally) mature at small sizes and remain at risk. I tested whether these differences in expected survival were reflected in the behavior of females during the maternal phase (i.e., the period during which females exhibit maternal care). Female L. fontinalis carry developing juveniles inside a brood pouch. I simulated predatory attacks on gravid female L. fontinalis from the different population types and found that female behavior correlated with population differences in risk. When “attacked”, females from streams with predatory fish (that experience high risk to adult females) released juveniles from the brood pouch, whereas females from populations with predatory salamander larvae (that pose relatively little risk to adult females) did not release juveniles. I discuss the results with reference to the joint evolution of behavioral and life history traits. Received: 6 March 1996 /Accepted after revision: 12 August 1996  相似文献   

18.
Fréville H  McConway K  Dodd M  Silvertown J 《Ecology》2007,88(10):2662-2672
The global extinction of species proceeds through the erosion of local populations. Using a 60-year time series of annual sighting records of plant species, we studied the correlates of local extinction risk associated with a risk of species extinction in the Park Grass Experiment where plants received long-term exposure to nutrient enrichment, soil acidification, and reductions in habitat size. We used multivariate linear models to assess how extrinsic threats and life history traits influence extinction risk. We investigated effects of four extrinsic threats (nitrogen enrichment, productivity, acidification, and plot size) as well as 11 life history traits (month of earliest flowering, flowering duration, stress tolerance, ruderalness [plant species' ability to cope with habitat disturbance], plant height, diaspore mass, seed bank, life form, dispersal mode, apomixis [the ability for a species to reproduce asexuall through seeds], and mating system). Extinction risk was not influenced by plant family. All of the 11 life history traits except life form and all threat variables influenced extinction risk but always via interactions which typically involved one threat variable and one life history trait. We detected comparatively few significant interactions between life history traits, and the interacting traits compensated for each other. These results suggest that simple predictions about extinction risk based on species' traits alone will often fail. In contrast, understanding the interactions between extrinsic threats and life history traits will allow us to make more accurate predictions of extinctions.  相似文献   

19.
Abstract: We used experimental nests baited with California Quail (  Callipepla californica ) eggs or clay eggs to examine relative risks of nest predation in an agricultural landscape and in two large forest preserves in a south-temperate rainforest in Chile. The most common predators, as identified by marks on clay eggs, were a caracara (   Milvago chimango ), a blackbird ( Curaeus curaeus ), and rodents. Nest losses from predation were similar in large and small forest patches and lower in patches than in extensive forest. In general, predation risk was higher (and nest survival therefore lower) on forest edges than in forest interior, in short-grass pasture than in tall-grass pasture, in narrow corridors than in wide corridors, and on visible nests than on concealed nests. High predation risks in pasture habitat tended to increase the risk of nest predation in adjacent forest edges. For open-cup nesters, the risk of nest predation was relatively high in the present agricultural landscape, indicating that much of the available wooded habitat (  forest edges, narrow corridors) offers poor nesting habitat, although it may be suitable for foraging and traveling. The numerous bird-plant mutualisms in this landscape may be at risk if nesting success of the principal mutualists is consistently low.  相似文献   

20.
Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life‐history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life‐history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards “faster” life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3–40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra‐ and inter‐specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life‐history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi‐species context, where both age‐specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life‐history changes in harvested species are unlikely to increase their resilience and recovery ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号