首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Pelagic primary production and benthic and pelagic aerobic metabolism were measured monthly at one site in the estuarine plume region of the nearshore continental shelf in the Georgia Bight. Benthic and water-column oxygen uptake were routinely measured and supplemented with seasonal measures of total carbon dioxide flux. Average respiratory quotients were 1.18:1 and 1.02:1 for the benthos and water column, respectively. Benthic oxygen uptake ranged from 1.23 to 3.41 g O2 m-2 d-1 and totalled 756 g O2 m-2 over an annual period. Water column respiration accounted for 60% of total system metabolism. Turnover rates of organic carbon in sediment and the water column were 0.09 to 0.18 yr-1 and 6.2 yr-1, respectively. Resuspension appeared to control the relative amounts of organic carbon, as well as the sites and rates of organic matter degradation in the benthos and water column. Most of the seasonal variation in benthic and pelagic respiration could be explained primarily by temperature and secondarily by primary productivity. On an annual basis, the shelf ecosystem appeared to be heterotrophic; primary production was 73% of community metabolism, which was 749 g C m-2 yr-1. The timing of heterotrophic periods through the year appeared to be closely related to both river discharge and the periodicity of growth and death of marsh macrophytes in the adjacent estuary. The results of this study support the estuarine outwelling hypothesis of Odum (1968).This is Contribution No. 530 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce  相似文献   

2.
Sedimentation and sulfate reduction under a mussel culture   总被引:9,自引:0,他引:9  
The sedimentation and dissimilatory sulfate reduction under a blue-mussel culture were quantified in order to gain information on the environmental impact of intense mussel farming. The sedimentation rate (3 g C·m-2·d-1) under a culture is nearly three times higher than at a nearby reference station. A build-up of sediment rich in organic material and sulfide takes place under the mussels. At 15°C the sulfate reduction rate was 30.5 mmol SO = 4 ·m-2·-1 in the upper 10 cm of the mussel sediment. The increase in sedimentation under a mussel culture and the consequent effects should be considered when establishing mussel farms.  相似文献   

3.
The animal-habitat relationships and seasonal dynamics of the benthic macroinfauna were investigated from November 1986 to October 1988 in the Great Sippe-wissett salt marsh (Massachusetts, USA). Total macrofaunal abundance varied seasonally, displaying a peak in late spring and early summer, then declining sharply during late summer and recovering briefly in fall before collapsing in winter. Three macroinfaunal assemblages were found in the marsh, distributed along gradients of environmental factors. These included a sandy non-organic sediment assemblage, a sandy organic sediment assemblage and a muddy sediment assemblage. The species groups characteristic of unstable sandy non-organic sediments included the polychaetes Leitoscoloplos fragilis, Aricidea jefreyssi, Magelona rosea and Streptosyllis verrilli, the oligochaete Paranais litoralis, and the crustacean Acanthohaustorius millsi. Sandy organic sediments were characterized by the polychaetes Marenzelleria viridis, Capitella capitata, Neanthes succinea, N. arenaceodonta, Polydora ligni and Heteromastus filiformis, the oligochaete Lumbricillus sp., and the mollusc Gemma gemma. In muddy sites, the polychaete Streblospio benedicti and the oligochaetes Paranais litoralis and Monopylephorus evertus were the dominant species. Secondary production of benthic macroinfauna in each of these habitats was estimated. The highest values of biomass and production were recorded in the sandy organic sediments. Secondary production was estimated to be 1850 kJ m-2 yr-1 in sandy organic areas, but only 281 kJ m-2 yr-1 in sandy non-organic areas and 113 kJ m-2 yr-1 in muddy areas. This results in an area-weighted average production of 505 kJ m-2 yr-1 for the unvegetated areas of the marsh. The Great Sippewissett salt marsh has an area of 483800 m2, the total secondary production of the macroinfauna for the whole unvegetated area of the marsh was estimated as 4651 kg dry wt yr-1, expressed as somatic growth. This production value seems consistent with production data obtained for other intertidal North Atlantic environments.  相似文献   

4.
Community metabolism of intertidal flats in the Ems-Dollard estuary   总被引:4,自引:0,他引:4  
To obtain an insight into the flux of carbon through intertidal sediments of the Ems-Dollard estuary, the annual cycles of gross benthic primary production and community respiration were measured at six stations, together with a set of environmental parameters. In a stepwise multiple regression analysis it was shown that temperature alone and temperature plus viable bacteria explained 50 and 70% respectively of the observed variation in community respiration. Other variables, including the rate of primary production and amount of organic carbon in the sediment were less important. The rate of primary production could not be fitted adequately into a multiple regression equation. The annual values of community respiration (177–794 gO2·m-2·yr-1) and primary production (82–628 gO2·m-2·yr-1) were within the range of published values. except for one station in the vicinity of a wastewater outfall, which had an extreme production (average 984 gO2·m-2·yr-1). At four stations, annual community respiration exceeded primary production by 40%. It is concluded that the main carbon flux within the sediment, from CO2 to benthic primary producers, to benthic consumers and from there to CO2 again,was completed within a month or so, leaving untouched the large bulk of organic matter within the sediment. Possible effects of wastewater discharges on community metabolism are discussed.Publication No. 43 of the project Biological Research in the Ems-Dollard Estuary  相似文献   

5.
Data presented and discussed here were collected continuously during April/May 1975 in the Bornholm Basin of the Baltic Sea. Sedimentation rates of particulate matter were recorded with 5 multisample sediment traps from different depths in the water column at 2 positions 170 km apart. Current meter data collected during the same period and depths indicated that the positions remained hydrographically distinct during the investigation. Particulate matter from the euphotic zone including diatom cells formed the bulk of the material collected by all traps. This flux of organic particles to the bottom was unimpeded by the strong density stratification present in the water column. The upper traps always collected less material than lower ones. This paradox has been ascribed to diminishing current speeds with depth, concomitant with an increase in sinking rates of phytoplankton and phytodetritus. Both factors influence the sampling efficiency of sediment traps, which are thought to have underestimated actual sedimentation rates here. A time lag of 2 to 3 weeks in bloom development seemed responsible for the characteristic differences between the two positions. The phase of major sedimentation at one position covered about 18 days, and a distinct sequence in the composition of the material collected by the 6 glasses of each trap indicated phases of a progressively deteriorating phytoplankton population in the water column contributing the particulate material. A total of 6.2 g C m-2 in 34 days was recorded at this station. Apart from a trap situated in an oxygen deficient layer which collected 0.44 g C m-2 of zooplankton corpses, zooplankton mortality was overestimated by the traps. Large-scale sedimencation of fresh organic matter produced by the spring bloom is probably a regular feature in areas with low over-wintering zooplankton populations and, as such, possibly has a direct stimulatory effect on growth and reproduction of the benthos.Contribution No. 185 of the Joint Research Programme 95, Kiel University.  相似文献   

6.
The carbon flow through the sediments at a station located in 18.3 m of water off the Scripps Institution of Oceanography, San Diego, California (USA) was determined. The parameters studied [and their mean rates of input (+) or output (-) to the benthos] were macro-detritus (+0.028 gC m-2day-1), fallout of particulate debris (+3.3 gC m-2day-1), benthic net photosynthesis during the day (-0.06 gC m-2 daylight period-1), burial (0 gC m-2day-1), benthic respiration at night (-0.28 gC m-2 night period-1), and resuspension (-3.0 gC m-2day-1). Resuspension of sediment at this station was found to have a controlling effect on the sediment organic carbon content. Benthic photosynthesis was able to provide 79% of the organic carbon required by the benthos for respiration during the daylight hours. A carbon-flow diagram linking together all of the above measurements is presented.  相似文献   

7.
The seasonal growth rates and nitrogen and carbon fluxes were estimated for two subtidalMacrocystis integrifolia Bory kelp forests in British Columbia, Canada from changes in population structure through time. Mean relative growth rates of the forests varied from a high of 4.3% d-1 to a low of-3.6% d-1. Mean net assimilatioon rates of carbon (a photosynthesis analog) varied from a high of 0.66 g C m-2 of foliage d-1 to a low of-0.87 g C m-2 d-1. The leaf area index ranged from 0.3 to 11.9. Annual carbon input on a foliage area basis was calculated at 250 g C m-2 yr-1. Annual carbon input to the forest was estimated at 1 300 g C m-2 of ocean bottom yr-1. The yearly nitrate nitrogen input to the forest was estimated at 60 g N m-2 of ocean bottom yr-1. The net ecosystem production varied from-520 to +31 g C m-2 of ocean bottom yr-1. The intra-forest, inter-forest and seasonal variabilities of these productivity parameters are discussed.  相似文献   

8.
R. Fichez 《Marine Biology》1991,110(1):137-143
To establish relationships between organic input to the benthos and decreases in benthic population biomass and density, benthic oxygen uptake was measured in an oligotrophic submarine cave in the northwestern Mediterranean Sea (Marseille, France), on seven separate occasions in 1987, using an in situ bell-jar respirometer. Oxygen uptake was measured in both the outer twilight section and the dark inner section of the cave during an annual survey (seven recording periods from February 1987 to November 1988). The mean annual benthic oxygen uptake was 80.9 litres O2 m–2 yr–1 for the twilight outer section and 15.5 litres O2 m–2 yr–1 for the dark inner section. The results are discussed and the biogeochemical budget for particulate organic carbon at the sediment-water interface calculated. Respiration rates (expressed as carbon equivalents), together with previously published data on vertical fluxes and burial of organic carbon, revealed that anaerobic pathways accounted for 14% and aerobic pathways for 86% of the total benthic metabolism in the outer part of the cave. In the inner section of the cave, degradation of organic carbon occurred only through aerobic degradation, indicating a strongly carbon-limited ecosystem. The low respiration rates recorded in the dark section were similar to values recorded for some oligotrophic deep-sea environments (1 000 to 2 000 m). Such budgets are essential preliminary steps in order to accurately model benthic metabolic pathways. The determination of annual fluxes linked to the acquisition of long-term data will yield better knowledge of the recycling processes at the water-sediment interface.  相似文献   

9.
A decreasing gradation in the plankton standing stock of the Bristol Channel was observed from the seaward section to the inner, less saline, reaches. Two sub-regions of our survey, the North Outer Channel (NOC) and the Inner Channel (IC), represented the extremes of this gradient and were selected for detailed comparison. The integrated zooplankton biomass, over the 307 d sampling period (4 November 1973 to 6 September 1974), was 2 475 mg C m-3 (266 mg C m-2 d-1) in the NOC and 335 mg C m-3 (20 mg C m-2 d-1) in the IC. The omnivorous plankton accounted for 76% of the standing stock in the NOC and 89% in the IC, of which 58 and 23% were meroplankton and 39 and 71% were holoplankton, respectively; the remainder was unassigned. The majority of the meroplankton in both subregions was decapod larvae and adults, whereas the holoplankton biomass was dominated in the NOC by copepods (89%) and in the IC by mysids (57%), mainly Schistomyzis spiritus. Centropages hamatus was the most abundant copepod species in the NOC and accounted for 32% of the total holoplankton omnivore standing stock. In the NOC and IC, the carnivorous plankton accounted for 24 and 11% of the total plankton biomass, respectively. In the two sub-regions, 20 and 21% of the carnivores were meroplanktonic (primarily larvae of sprats and pilchards), while the holoplankton carnivores contributed 75 and 74% to the NOC and IC, respectively (Sagitta elegans, Pleurobrachia pileus). S. elegans dominated the holoplankton carnivore biomass for the majority of the year and accounted for 96% in the NOC and 60% in the IC. The integrated total particulate carbon over the 307 d period was 200 g C m-3 (6 600 g C m-2) in the NOC and 838 g C m-3 (15 084 g C m-2) in the IC. The annual primary production ranged from 164.9 g C m-2 yr-1 in the Outer Channel (North and South) to 6.8 g C m-2 yr-1 in the IC. The zooplankton biomass reached a maximum in July. The total particulate carbon (TPC) in July was 400 mg C m-3 in the NOC of which ca. 78 mg C m-3 were phytoplankton and ca. 21 mg C m-3 were zooplankton; these values compare favourably with those found in the adjoining Celtic Sea. In the IC, the TPC was 2 800 mg C m-3, of which ca. 107 mg C m-3 were phytoplankton and 2.8 mg C m-3 were zooplankton. From the low primary production estimates for the IC it can be concluded that the majority of the chlorophyll, like the TPC, was allochthonous in origin. Furthermore it is suggested that zooplankton plays a minor role in this estuarine ecosystem and is not the main consumer of the suspended particulate carbon; the benthic filter-feeding communities are presumed to fulfill this role in the Bristol Channel.  相似文献   

10.
The dominant phytoplankton taxa during seasonal periods of peak primary productivity were identified during a 4 yr study (July 1989 to June 1993) in Chesapeake Bay. Maximum phytoplankton abundance occurred from late winter to early spring, and was dominated by a few species of centric diatoms. This development was followed by more diversified assemblages of diatoms and phytoflagellates that produced additional concentration peaks in summer and fall; all these maxima were accompanied by concurrent productivity peaks. High summer productivity resulted when the phytoplankton concentrations of diatoms and phytoflagellates were augmented by an increased abundance of autotrophic picoplankton. There was variability in both the seasonal and annual growth maxima of these algal populations and in total productivity. Higher cell concentrations and productivity were associated with higher nutrient levels on the western side of the bay, at sites adjacent to major tributaries. Periods of highest productivity were in spring and summer, ranging from 176 to 346 g Cm-2yr-1 over the 4 yr period, with a mean annual productivity of 255 g Cm-2yr-1. The bay stations rates ranged from 82 to 538 g Cm-2yr-1.  相似文献   

11.
S. Y. Lee 《Marine Biology》1990,106(3):453-463
Net primary productivity and organic matter flow of a mangrove-dominated wetland was estimated by following production and detritus dynamics in a tidal pond in north west Hong Kong in 1986–1988 (9.1 ha). Total productivity was 12.47 t dry wt ha–1 yr–1, of which >90% was from emergent macrophytes (the mangroveKandelia candel and the reedPhragmites communis). High turbidity and high summer temperatures probably limited respective production by phytoplankton and benthic macroalgae (dominated byEnteromorpha crinata). Despite the high total productivity, little detritus was exported from the emergent macrophyte stands, due to the low inundation frequency. This created a net water column carbon deficit which was provided for by the high organic matter import (mean = 4.42 g ash free dry wt m–2 d–1) from the incoming water. This same sediment and particulate organic carbon input giving a high accretion rate of 1.7 cm yr–1 was probably also the force behind progressive dis-coupling of emergent macrophyte production from water column consumers. This resulted in a tendency to retain production in the emergent macrophyte stands while the water column community increasingly relied on allochthonous carbon. This shift from a net exporter to a net importer of carbon in landward wetlands is probably characteristic of the transition into nutrient-conservative terrestrial systems.  相似文献   

12.
Nitrogen pools and transformations and benthic communities at a Perna canaliculus farm and a nearby reference site without direct influence of marine farming in Kenepuru Sound, New Zealand, were compared on four dates between September 1982 and May 1983. The organic nitrogen pool in the top 12 cm sediment was 7.4 to 10.8 mol m-2 at the mussel farm and 6.1 to 8.9 mol m-2 at the reference site. The nitrate and nitrite pools were similar in both sediments, but the ammonium pool in the mussel farm sediment was about twice as high as in the reference sediment. In January, the sediment ammonium concentrations ranged from 418 nmol cm-3 (surface) to 149 nmol cm-3 (12 cm depth) at the mussel farm and from 86 to 112 nmol cm-3 at the reference site. The molar C:N ratio of the sediment organic matter was 6.2 to 7.2 at the mussel farm and 7.9 to 10.0 at the reference site. The molar N:P ratio of the sediment organic matter was 4.3 to 7.2 and 3.3 to 6.1 at mussel farm and reference site, respectively. The total nitrogen mineralisation rate in the top 12 cm sediment ranged from 21.7 to 37.1 mmol m-2 d-1 at the mussel farm and from 8.5 to 25.0 mmol m-2 d-1 at the reference site. Ammonium excretion by mussels was about 4.7% (January) and 7.4% (May) of the combined nitrogen mineralisation by mussels and sediment. The sediment-denitrification rate was 0.7 to 6.1 mmol m-2 d-1 at the mussel farm and 0.1 to 0.9 mmol m-2 d-1 at the reference site. In January, 76 and 93% of the nitrate reduced in the sediments were denitrified at the mussel farm and reference site, respectively. The denitrification rate on the mussel lines (determined on detritus-covered mussels) was twice the mussel farm sediment-denitrification rate and 10 times the reference sediment-denitrification rate. Total denitrification at the mussel farm was 21% higher than at the reference site. The loss of nitrogen through mussel harvest and denitrification was 68% higher at the mussel farm. The surface layers of both sediments contained about 75 mg m-2 chlorophyll a. Sediment phaeophytin levels were 52 mg m-2 at the reference site and 137 mg m-2 at the mussel farm. While the benthic infauna of the mussel-farm sediment consisted only of polychaete worms, the reference sediment contained also bivalve molluscs, brittle stars and crustaceans.  相似文献   

13.
Effect of algal bloom deposition on sediment respiration and fluxes   总被引:5,自引:0,他引:5  
Using sediment cores collected in November 1989 from Aarhus Bight, Denmark, the fluxes of O2, CO2 (total CO2), NH 4 + , NO 3 +NO 2 and DON (dissolved organic nitrogen) across the sediment-water interface were followed for 20 d in an experimental continous flow system. On day 7, phytoplankton was added to the sediment surface, to see the result of simulated algal bloom sedimentation. Benthic O2 consumption and CO2 efflux, 38 to 41 mmol O2 m-2 d-1 and 25 to 30 mmol CO2 m-2 d-1, respectively, immediately increased by 39% and 100% after the algal addition, but gradually declined to the orginal level. Fluxes of NH 4 + (1.0 to 1.2 mmol m-2 d-1) and DON (0.3 to 0.9 mmol m-2 d-1) increased due to the organic substrate addition. NH 4 + and NO 3 flux changed direction, becoming an efflux and influx, respectively, for a few days and a large amount of DON (max. rate 4.0 mmol m-2 d-1) was immediately produced either by bacterial hydrolytic activity or from autolysis of the algae. DON was the most significant nitrogen component in pore water and in terms of N-flux from sediment. A temporary stimulation of anaerobic respiration processes (sulfate reduction and denitrification) and a decrease in nitrification were indicated. After the effect of the organic addition had declined, the fluxes gradually reverted to the original rates. The halflife of the added algal material, of which 20 to 30% was very labile, was estimated to be 2 to 3 wk.  相似文献   

14.
The response of benthos to sedimentation of the spring phytoplankton bloom in the Kiel Bight (Western Baltic Sea) is described in terms of biomass (ATP) and activity (heat production and ETS-activity). Input of the bloom (11.5 g C m-2) over a period from March 25 to April 19, 1980 to the sediment surface was in the form of cells and fresh phytodetritus as indicated by low C/N ratios (7) and high energy charge values (0.78). Benthic microbial activity was immediately stimulated by this input as heat production doubled and the activity of ETS tripled over winter values within 12 d in the absence of a significant increase in ambient temperature. A comparison of the two activity parameters suggests that anaerobic metabolism is more important during the winter (February and March) than after input of the bloom. Meiofauna was not able to take part in the first activity outburst. Benthic ATP-biomass (excluding macrofauna) doubled in late April due to microbial production, and doubled again in early May when meiofauna started reproductive activity. For macrofauna a general statement was not possible, although the sediment surface feeder Macoma baltica commenced a build up of glycogen and lipid resources immediately following bloom input whereas Nephtys ciliata, feeding on sediment and small macrofauna, showed a less pronounced and delayed effect from this input. An energy budget based on heat production measurements was calculated. A daily heat loss of the benthic community of 21.7 KJ m-2 d-1 (35.5 KJ m-2 d-1) was found, when a depth of 3 cm sediment (5 cm) was assumed. Heat production of macrofauna contributed less than 5% of this activity. The input of the bloom was burned within 21 (13) d. Preliminary estimations for an annual budget suggest that the vertical transport of particulate organic matter via sedimentation can only explain 25% (15%) of the benthic activity in the shallow water ecosystem of the Kiel Bight. This indicates the presence of other sources of organic carbon such as benthic primary production or other transport processes providing carbon to the sediments.Publication No. 384 of the Joint Research Program of Kiel University (Sonderforschungsbereich 95)  相似文献   

15.
Quantitative data on size structure of the ophiuroid Amphiura filiformis (O.F. Müller) from 35 benthic stations in the Kattegat sampled twice with a 143 d interval, June and October 1991, were used to estimate somatic growth. The material was objectively divided into cohorts, and cohorts, from the two occasions were paired to give estimates of growth. The growth constant, K, in the Von Bertalanffy equation, was estimated from a Ford-Walford plot to 0.54 yr-1. Results were in agreement with previous estimates from a few single sites, and suggest that the main part of dise growth occurs within the first 5 to 7 yr of living. Size specific growth in oral width was density independent despite high densities of A. filiformis (>3000 ind m-2) and high total benthic biomass (up to 1000 g wet wt m-2) in some areas. Growth was uncorrelated with plant pigment concentrations in the sediment and showed weak positive correlation with sediment carbon and nitrogen, as well as water depth. Growth was higher in fine sediments. This is the first attempt to estimate growth in this important species over a large area and to relate growth in the field to environmental factors.  相似文献   

16.
This study was designed to assess the contribution of moulting and eggs to production of the euphausiid Nyctiphanes australis G. O. Sars. For this purpose, live specimens were collected from Storm Bay, south-eastern Tasmania, between August and December 1981, while preserved samples, collected between February 1980 and February 1981, were also examined. The intermoult period of N. australis increased exponentially with increase in body length and weight. Larvae moulted approximately every 2.5 to 3 d and adults every 4 to 5 d at 15°C. A decrease in temperature from 15° to 10°C resulted in the intermoult period almost doubling. The mean weight of exuviae produced represented nearly 6% of the body dry weight of the individual. Continuous maturation of ova was observed, with an individual female capable of releasing a total of 1 100 eggs in a lifetime. These are deposited as a series of batches into a pair of external ovisacs every 30 d. The size of the batch of eggs was dependent on the size of the female. Moulting of euphausiids forms a significant contribution of organic matter to detrital food webs. A value of 42.01 mg m-3 yr-1 was obtained for the production of exuviae. Egg production was calculated to be between 1.41 and 4.22 mg m-3 yr-1. Production and mean annual biomass of N. australis was previously calculated as 78.29 mg m-3 yr-1 and 5.39 mg m-3, respectively. Thus, the total production integrated for the whole of Storm Bay was 125 mg m-3 yr-1 or 2 309 tonnes dry wt yr-1, representing an overall P:B ratio of 23.1.  相似文献   

17.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

18.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

19.
于2007年7月—2008年5月,分季度对丹江口水库底栖动物群落及水环境进行为期一年的调查。运用经验公式估算丹江口水库大型底栖动物群落的生产力,并分析底栖动物密度、生物量、生产力及P/B系数的空间分布,探讨环境因子与底栖动物群落生产力空间分布的关系。结果显示,丹江口水库底栖动物年平均密度、生物量及生产力分别为4 761 ind·m~(-2)、1.61 g DM·m~(-2)和35.45 g DM·m~(-2)·y~(-1),P/B系数为22.0 y~(-1)。不同区域生产力差异很大,湖泊区达61.80 g DM·m~(-2)·y~(-1),而支流区仅有5.48 g DM·m~(-2)·y~(-1)。P/B系数同样在湖泊区达到最大,为34.0 y~(-1);在丹江过渡区最低,为13.1 y~(-1)。颤蚓是生产力的主要贡献者,周年生产力为31.85 g DM·m~(-2)·y~(-1),占总生产力的90%。湖泊区由于其稳定的水动力条件,为颤蚓提供了非常适宜的生境,因此具有很高的生产力水平。与之相反,支流区由于水体扰动较大,底栖动物生物量及生产力水平均较低。从生产力的角度研究丹江口水库底栖动物群落的空间分布规律及影响因子,对丹江口水库的生态管理具有参考价值。  相似文献   

20.
Primary production of the marine phanerogam Posidonia oceanica (Linnaeus) Delile was measured by lepidochronological analyses at 22 sites in the Mediterranean Sea (Corsica, France, Italy, Sardinia and Turkey), between 1983 and 1992, to determine spatial and temporal variations. Leaf production (blade and sheath) ranged from 310 to 1 540 mg dry wt shoot–1 yr–1, depending on site and depth. Rhizome production ranged from 24 to 120 mg dry wt shoot–1 yr–1 (6% of average leaf production). At some sites the results obtained by lepidochronological analysis were consistent with earlier results obtained by classic methods (e.g. leaf-marking). While primary production per shoot (mg dry wt shoot–1 yr–1) displayed no significant differences between sites, primary production of the P. oceanica meadow (g dry wt m–2 yr–1) decreased with increasing depth at all sites studied. This decrease correlated with reduced density of the meadow (number of shoots per m2) with increasing depth. Past primary production was also extrapolated at three sites at the island of Ischia (Italy) for a period of 5 yr in order to determine interannual variations over a period of several years. While major variations were recorded for the surface stations (5 and 10 m depth), production remained stable at the deepest station (20 m depth). Given the large geographical scale of the study (location, depth range), it would appear that while P. oceanica production remains considerable, the values recorded in the literature on the basis of classical analyses (surface stations) represent maxima, and cannot be generalised for meadows as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号