首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
北京市西三环地区大气颗粒物中多环芳烃的分布特性   总被引:2,自引:1,他引:1  
李峣  钱枫  何翔 《环境科学研究》2013,26(9):948-955
于2012年3—12月在北京市西三环地区按粒径分6级采集大气颗粒物样品,采用气相色谱-质谱(GC-MS)对颗粒物样品中16种优控PAHs(多环芳烃)进行分析. 结果表明:颗粒物中ρ(∑16PAHs)(PAHs的总质量浓度)季节变化显著,表现为冬季>春季>秋季>夏季,并且与ρ(PM)(PM为颗粒物)呈良好线性相关;不同粒径颗粒物中ρ(PAHs)呈向小粒子富集的趋势,PM2.1中ρ(PAHs)约占ρsum(∑16PAHs)〔6级颗粒物中ρ(∑16PAHs)总和〕的64%~87%;除夏季3环PAHs占优势外,其他季节均以4~ 5环PAHs占优势;同时,随着粒径的减小,PAHs有向高环数富集的趋势. 运用主成分分析和多元线性回归法进行源解析发现,机动车尾气排放和燃煤是本地区大气颗粒物中PAHs的主要来源;不同粒径颗粒物中的PAHs来源有差异,2.1~10.2μm粒径段颗粒物中PAHs主要来源于机动车尾气排放,贡献率为63.0%;而1.3~2.1μm和<1.3μm的颗粒物中PAHs均主要来源于燃煤,贡献率分别为56.8%和58.7%.   相似文献   

2.
POPs(持久性有机污染物)是近年来广受关注的一类环境污染物. 为研究工业过程中POPs的运转迁移,针对电路板蚀刻废液及其回收后生产的铜盐产品中7种指示性PCBs(多氯联苯)及CB-209进行分析. 结果表明,PCBs在碱性废液和微蚀废液中未检出,而在酸性废液中有不同程度检出,ρ(∑8PCBs)在0.41~60.80 ng/L之间,其中ρ(∑7指示性PCBs)在0.24~58.00 ng/L之间. 3种铜盐产品〔CuCl2、Cu2(OH)3Cl和CuSO4〕中,CuSO4中w(∑8PCBs)相对较高,在2.75~284.00 ng/kg之间;而CuCl2中w(∑8PCBs)在6.95~31.50 ng/kg之间;Cu2(OH)3Cl中w(∑8PCBs)在7.31~9.42 ng/kg之间. 污染物指纹特征表明,酸性蚀刻废液及其铜盐产品中的PCBs具有十分相似的分布特征,CB-28是最主要的检出单体,并且w(CB-209)相对较高,表明铜盐产品中的PCBs主要来源于生产原料(酸性蚀刻废液)的携带,而酸性蚀刻废液中污染物来源须待进一步分析研究.   相似文献   

3.
广州颗粒物化学组成特征及季节差异   总被引:5,自引:2,他引:3       下载免费PDF全文
为系统反映广东省广州市冬、夏季颗粒物的特征,分别于2008年12月16日─2009年1月9日和2009年8月4 ─29日,在广州市环境监测中心站使用微天平法四通道颗粒物采样仪进行颗粒物采样,并测定了PM10中ρ(OC)和ρ(EC),Al和Fe等16种化学元素以及SO42-和Ca2+等9种离子的质量浓度.结果表明:ρ(PM10),PM10中的ρ(OC)和ρ(EC),Al和Fe等16种化学元素以及SO42-和Ca2+等9种离子的质量深度季节差异明显,均表现为冬季高于夏季;冬、夏季PM10中各成分所占比例排序不同,但均以OC所占比例最大,SO42-和Ca2+等9种离子次之.广州PM10主要有5个来源,但冬、夏季不同.其中冬季主要来源于工业源和土壤扬尘、燃煤、交通排放和生物质燃烧、海盐;夏季则主要来源于燃油、交通排放和生物质燃烧、土壤扬尘或燃煤、海盐、垃圾焚烧或特殊工业源.   相似文献   

4.
不同微生物处理工艺对全氟化合物的去除效果   总被引:1,自引:0,他引:1       下载免费PDF全文
以辽宁省4个采用不同微生物处理工艺的污水处理厂为研究对象,采用WAX固相萃取分离富集和高效液相-质谱联用(HPLC/MS/MS)方法测定了4个污水处理厂中13种PFCs(全氟化合物)〔9种PFCAs(全氟羧酸类化合物,C4~C12)和4种PFSAs(全氟磺酸类化合物,C4、C6、C8、C10)〕的质量浓度. 研究发现,9种PFCAs(C4~C12)(记为∑PFCAs)和2种PFSAs(C4、C8)(记为∑PFSAs)均有不同程度的检出,水体中各PFCs浓度水平与碳链长度呈显著负相关. 进水中ρ(∑PFCAs)和ρ(∑PFSAs)分别为81.5~135.9和3.7~4.6 ng/L,出水中ρ(∑PFCAs)和ρ(∑PFSAs)分别为47.4~63.3和2.8~3.7 ng/L. 进、出水受PFCAs尤其是短链PFCAs污染较为严重. 4个污水处理厂对PFCs的去除呈现相似的去除效果及规律,即PFCs的去除主要靠活性污泥的吸附作用,而与污水处理厂所采用的微生物处理工艺相关性不大.   相似文献   

5.
北京交通环境PM10分布特征及重金属形态分析   总被引:7,自引:1,他引:6  
以北京市西三环航天桥地区为对象,研究了城市交通环境大气可吸入颗粒物浓度及主要化学组成随时间和粒径的分布特征. 结果表明:该地区大气中ρ(PM10)冬季略高于春季,秋季次之,夏季最低;颗粒物中ρ(PM2.5)/ρ(PM10)和ρ(PM1.0)/ρ(PM10)平均值分别为82.6%和70.3%;ρ(PM10)与ρ(PM2.5)和ρ(PM10)与ρ(PM1.0)之间均有显著的相关性. PM10中金属元素浓度冬春季较高,夏秋季较低;Mg,Ca和Fe等地壳元素浓度随粒径的减小而降低,而Pb,Zn和Ni等重金属元素浓度总体上随粒径的减小而增加. 颗粒物中的Cr和Ni主要以有机物结合态存在,Cu,Zn和Cd主要以酸可提取态存在,Pb主要以酸可提取态和氧化物结合态存在;颗粒物中所含Cd和Zn元素的生物有效性最高. PM10中水溶性ρ(SO42-)在夏季和冬季最高,秋季最低,而水溶性ρ(NO3->/sup>)全年变化不大;[0.43~2.1 μm)粒径段颗粒物中的水溶性ρ(SO42-)及ρ(NO3->/sup>)较高,分别占PM10中水溶性ρ(SO42-)及ρ(NO3->/sup>)总量的68.3%及57.6%;ρ(NO3->/sup>)/ρ(SO42-)平均值为0.659.   相似文献   

6.
小型燃油锅炉大气污染物排放特征   总被引:5,自引:2,他引:3  
燃料燃烧是大气污染物的重要来源之一,对人体健康、空气质量和气候变化产生严重影响. 以85台小型燃油锅炉(≤10.5 MW)的颗粒物(PM),SO2和NOx排放实测数据为基础,通过统计分析方法,研究了大气污染物PM,SO2和NOx的排放特征及其影响因素,分析了我国小型燃油锅炉PM,SO2和NOx的排放现状. 结果表明,在未采取控制措施的条件下,ρ(PM)与燃油灰分〔w(灰分)〕和硫含量〔w(S)〕无关;而在过量空气系数(α)>1时,ρ(SO2)与燃油w(S)之间呈现显著的正线性相关性;ρ(NOx)与燃油氮含量〔w(N)〕不具有相关性,而随过量空气系数的增大而增大. 实测得到ρ(PM),ρ(SO2)和ρ(NOx)平均值分别为20.0,259.9和318.2 mg/m3;所有测试锅炉的ρ(PM)远远小于《锅炉大气污染物排放标准》(GB13271—2001)所规定的最高允许排放限值,有90%以上的锅炉达到ρ(SO2)最高允许排放限值,有84%的锅炉达到ρ(NOx)最高允许排放限值.   相似文献   

7.
为研究蒲河中致嗅类VOSCs(挥发性有机硫化物)的污染水平、空间分布及其影响因素,采用吹扫捕集(P&T)与气相色谱(GC)/火焰光度检测器(FPD)联用方法,测定水样中14种致嗅类VOSCs的质量浓度,采用相关性分析确定水质因子〔ρ(DO)、ρ(NH3-N)、ρ(CODCr)、ρ(BOD5)〕对ρ(∑VOSCs)空间分布的影响. 结果表明:所调查的27个采样点中各目标化合物均有检出,ρ(∑VOSCs)的范围为85.82~1 766.04 ng/L;DMS(甲硫醚)为最主要的污染物,ρ(DMS)平均值为114.29 ng/L,检出率为96.30%,变异系数为0.42. ρ(DO)与ρ(∑VOSCs)显著相关,Pearson相关系数为-0.751,对ρ(∑VOSCs)的空间分布影响最大;其次是ρ(NH3-N),Pearson相关系数为0.441;ρ(CODCr)和ρ(BOD5)与ρ(∑VOSCs)不相关.   相似文献   

8.
细颗粒物是燃煤电厂污染物控制的难点.三河电厂通过技术集成进行“近零排放”技术攻关,包括采用低低温静电除尘器以提高细颗粒物的除尘效率、利用脱硫除尘一体化技术提高脱硫系统的协同除尘性能、通过湿式静电除尘器实现细颗粒物的深度控制.结果表明:三河电厂通过技术攻关和集成应用后,4台燃煤机组先后实现ρ(烟尘)、ρ(SO2)和 ρ(NOx)分别低于GB 13223—2011《火电厂大气污染物排放标准》中天然气燃气轮机组各自排放限值(5、35和50 mg/m3).其中,1~3号机组排放ρ(烟尘)分别为5、3、2 mg/m3,截至2016年3月15日,4号机组ρ(烟尘)连续265 d在1 mg/m3以下.采用低低温静电除尘技术后,4号机组除尘效率由99.86%升至99.89%,同时可凝结颗粒物前驱物SO3的脱除效率从25.88%升至46.12%;3号机组采用脱硫除尘一体化技术后,100%负荷下协同除尘效率从34.29%升至87.66%以上,全负荷运行下吸收塔出口ρ(烟尘)稳定在3 mg/m3左右;1号、2号、4号机组在100%负荷下湿式静电除尘器除尘效率分别为77.87%、88.82%、83.60%,2号湿式静电除尘器对PM2.5、PM10和SO3的脱除效率分别为98.37%、97.31%和42.23%.   相似文献   

9.
鞍山大气颗粒物浓度的变化特征   总被引:2,自引:1,他引:1  
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用.   相似文献   

10.
应用DGI承重撞击器对四台燃煤机组湿法脱硫前、后细颗粒物进行采集,分析细颗粒物的粒径分布、元素组成以及脱硫系统的脱除效率.结果表明:脱硫前细颗粒物粒径峰值出现在0.20~0.40 μm处,脱硫后峰值出现在0.20~0.30 μm处.经过湿法脱硫系统后ρ(PM2.5)、ρ(PM1)、ρ(PM0.5)、ρ(PM0.2)出现不同程度的增长,平均增长率分别为13.28%、19.57%、28.79%、33.51%.分粒径颗粒物中ρ(Si)、ρ(Al)在脱硫前、后均随着颗粒物粒径的减小呈递减趋势,并且脱硫后ρ(Si)、ρ(Al)均有不同程度的降低,ρ(Fe)随颗粒物粒径的减小呈增加趋势,表现出一定的富集特性;湿法脱硫后Ca在PM1中的质量浓度出现明显的增长,ρ(Ca)由18.86~51.47 μg/m3增至41.87~84.83 μg/m3. Si、Al是PM2.5中的主要元素,经过湿法脱硫后ρ(Si)、ρ(Al)由59%~72%降至43%~59%;而Ca在PM2.5中表现出相反的变化趋势,ρ(Ca)由8%~13%升至17%~26%.   相似文献   

11.
李丹  伦小秀  邸林栓  王璇 《环境科学研究》2021,34(11):2579-2587
大气细颗粒物中有机物含量占20%~80%,部分有机物除具有较强的毒性外,还具有较强吸湿性,影响大气环境质量.因此,为充分研究细颗粒物中一元羧酸的来源及其对大气环境的影响,于2020年在秦皇岛市区(海港区站点)和工业园区(昌黎站点)采集细颗粒物,经预处理的样品用三氟化硼-甲醇(BF3-CH3OH)衍生化试剂衍生后,采用气相色谱质谱联用(GC-MS)的方法对PM2.5中的一元羧酸进行测定,一共检测到17种一元羧酸(碳数分布在10~24之间).结果表明:①PM2.5浓度的季节性变化呈冬季>秋季>春季>夏季的特征,且工业园区(昌黎站点)PM2.5浓度为21.40~112.41 μg/m3,高于市区(海港区站点为9.01~104.88 μg/m3).②两个采样点一元羧酸浓度的季节性变化特征并不明显,海港区站点、昌黎站点一元羧酸的年均浓度分别为873.91、895.22 ng/m3.③两个站点碳数小于22的一元羧酸浓度均表现出明显的偶数碳优势,海港区站点、昌黎站点浓度最高的一元羧酸均为棕榈酸(C16),年均浓度分别为512.86、514.34 ng/m3;其次是硬脂酸(C18),年均浓度分别为270.06、268.17 ng/m3.两站点各季节C16和C18分别占一元羧酸总浓度的48.83%~66.40%和22.81%~36.96%.一元羧酸的碳优势指数(CPI)与植物贡献的一元羧酸(碳数≥ 22)总浓度呈负相关.④根据碳数分布规律、∑C ≥ 22/∑C < 22(碳数大于等于22的一元羧酸与碳数小于22的一元羧酸浓度的比值)、C18/C16(硬脂酸和棕榈酸浓度的比值)、CPI值以及C18:1/C18(油酸与硬脂酸浓度的比值)来初步判断一元羧酸的来源及其对大气环境的影响,发现秦皇岛市两个站点夏季大气氧化性最强(市区大气氧化性较工业园区强),春、秋两季大气氧化性较弱,尤其是工业园区春季大气氧化性最弱,其一元羧酸主要来自本地源;燃煤、机动车尾气排放、道路扬尘以及肉类烹饪是大气PM2.5中一元羧酸的主要来源;植物源对一元羧酸浓度的贡献较小.研究显示,秦皇岛市两个站点一元羧酸浓度的季节性变化并不显著,燃煤、机动车排放、道路扬尘及肉类烹饪对一元羧酸贡献较大.   相似文献   

12.
草酸(C2)是大气颗粒物中有机物的重要组成部分,现有研究推测草酸主要来源于云中液相反应,然而,关于其云中形成机制的研究较少. 本文系统分析对比了华南背景山区的云水和云间隙颗粒物中二羧酸类物质,包括直链饱和二羧酸(C2~C9)、支链饱和二羧酸(iC4~iC6)、不饱和二羧酸〔马来酸(M)、富马酸(F)、柠康酸(mM)〕以及多官能团羧酸〔苹果酸(hC4)、丙酮酸(Pyr)和乙醛酸(ωC2)〕的浓度分布. 利用随机森林和多元线性回归方法进一步定量评估了草酸前体物、温度及云水性质(云水中液态水含量、pH、化学组成)对云水中草酸形成的影响. 结果表明:①云水和云间隙颗粒物中草酸的平均浓度分别为431 μg/L和27.28 ng/m3,分别占直链饱和二羧酸浓度的78.9%和70.0%,占水溶性有机碳浓度的2.4%和1.1%. ②云水中C2/总二羧酸类物质(浓度比)与二羧酸类物质浓度比〔如C2/(C3~C9)、C2/(iC4~iC6)、C2/(hC4+Pyr+ωC2)和C2/(M+F+mM)〕均呈显著正相关(R2为0.47~0.76, P均小于0.01),表明C3~C9、iC4~iC6、hC4+Pyr+ωC2和M+F+mM可能是云水中草酸形成的重要前体物. ③前体物对云水中草酸浓度变化贡献最大,贡献率为79%,其中hC4+Pyr+ωC2是最重要的前体物;其次是云水性质,贡献率为20%;温度的贡献率为1%. 研究显示,云中过程是草酸形成的重要途径,其形成过程受前体物、云水性质和温度等因素的影响.   相似文献   

13.
为评估生活垃圾焚烧飞灰替代矿粉生产沥青混合料及其路面浇筑全过程中PAHs的环境风险,采用实验室模拟与实际铺筑过程相结合的方法,改变飞灰添加量(以w计,0、3%、4%和5%)和加热温度(200、165、145和80 ℃),以对PAHs的释放规律进行研究. 结果表明:在实际筑路过程中,PAHs的释放受加热温度的影响较大,ρ(∑16PAHs)随加热温度的下降而降低,其中混合料制备和道路开放使用阶段的ρ(∑16PAHs)分别为249.0~378.0、72.1~95.1 μg/m3;但在路面浇筑阶段ρ(∑16PAHs)有增加的趋势,为254.0~571.0 μg/m3,并且在该阶段内ρ(4环PAHs)降低,低环(2~3环)和高环(5~6环)的PAHs质量浓度升高. 飞灰的添加抑制了PAHs的释放,w(∑16PAHs)在10.4~12.3 μg/kg之间,毒性当量浓度(以TEQ计)在0.011 μg/kg左右. 飞灰的添加抑制了以萘为主的低环PAHs的释放,并且在3%添加量时对PAHs的抑制效果最好;在飞灰添加量为3%、4%和5%时,w(萘)分别降低了42.7%、32.2%和35.3%.   相似文献   

14.
为探究德州市采暖季环境空气中含氮/硫物质的污染特征、气-粒分配规律及影响因素,对2017年11月10日—2018年3月15日德州市市区环境空气监测站在线离子色谱分析仪监测的水溶性离子及气态前体物质量浓度的小时数据进行了分析.结果表明:①德州市环境空气监测站ρ(NO3-)、ρ(SO42-)和ρ(NH4+)平均值分别为(18.36±18.55)(12.74±10.92)(9.60±8.75)μg/m3,在2018年1月三者均达到最高值;对比PM2.5及气态含氮/硫物质的质量浓度发现,ρ(PM2.5)和ρ(SO2)在2017年12月、2018年1月和2018年2月的月均值均较高,而ρ(SO2)与ρ(SO42-)、ρ(NH3)与ρ(NH4+)均在日间(08:00—17:00)出现波峰.②对颗粒态和气态含氮/硫物质质量浓度日均值进行双变量相关分析发现,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)两两之间的相关系数均高于0.75,表明二次离子的形成机制相似;而ρ(NH3)、ρ(NO2)、ρ(NO)、ρ(SO2)两两之间均不存在显著相关,说明这些气态前体物来自不同的局部排放源.③过剩NH3指数(FN)平均值为0.49±0.16,说明采样时段大气处于富氨环境,过剩的NH3会与气态HNO3生成NH4NO3,因此NO3-气溶胶的形成主要受HNO3的影响或限制.④相对湿度是影响ρ(PM2.5)最重要的气象因素,高湿环境会促进二次离子的转化.研究显示,冬季采暖排放会增加环境空气中含氮/硫物质的质量浓度,气象因素(尤其是相对湿度)对含氮/硫物质的气-粒分配也有一定影响.   相似文献   

15.
为了评估2018年春节期间(2月15—16日)京津冀及周边地区“2+26”城市烟花禁限放措施的效果,采用浓度特征对比、ρ(PM2.5)/ρ(CO)等方法,对“2+26”城市的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)进行分析,并定量估算了除夕夜烟花燃放对ρ(PM2.5)和ρ(SO2)的贡献率.结果表明:“2+26”城市烟花的集中燃放会导致ρ(PM2.5)、ρ(SO2)显著增长,出现以PM2.5为首要污染物的重污染时段,2018年12月16日03:00区域内14个城市ρ(PM2.5)达到重度及以上污染水平,呈区域性污染特征;与2017年同期(1月27—28日)相比,2018年春节期间(2月15—16日)14个城市烟花燃放对ρ(PM2.5)平均贡献量呈下降趋势,其中,淄博市、济南市、北京市降幅最大,分别下降了85.2%、74.6%和65.2%,表明烟花禁限放措施起到了显著的污染削峰作用;与城区相比,周边郊县ρ(PM2.5)显著高于城区,呈“农村包围城市”的现象,说明城区监测点位受到郊县等周边地区烟花燃放的传输影响.研究显示,虽然城区烟花禁限放措施起到了显著的削峰作用,但城区监测点位空气质量仍受到郊县等周边地区烟花燃放的传输影响,导致大气重污染的发生.   相似文献   

16.
利用气相色谱-三重四级杆质谱(GC-MS/MS)对采自刘桥二矿的13件煤矸石样品(7件新鲜煤矸石样品,6件风化煤矸石样品)中16种优先级母体多环芳烃(16PAHs)和烷基多环芳烃(a-PAHs)进行了定性和定量分析.结果表明:煤矸石中不仅含有16PAHs,而且含有对应的a-PAHs,后者含量(均值587.88ng/g,...  相似文献   

17.
南京市大气气溶胶中二元羧酸昼夜变化研究   总被引:8,自引:1,他引:7  
2002年3月14-19日在南京大学校园内进行了为期1周的采样,用以研究大气气溶胶PM2.5中的低分子量(C2~C10)二元羧酸的昼夜变化规律.结果表明,南京市大气气溶胶中二元羧酸的夜间质量浓度(平均为460ng/m3)普遍高于相应的白天质量浓度(平均为350 ng/m3).草酸是含量最高的二元羧酸,其次是丁二酸与丙二酸,这3种二元羧酸占所检测到的水溶性有机酸总量的89%.由C3/C4(ρ(丙二酸)/ρ(丁二酸))(平均为1.00)可以判断采样期间气溶胶中有机酸主要来源于大气的光化学氧化反应,从C6/C9(ρ(己二酸)/ρ(壬二酸))(平均为0.88)可以认为生物源是有机酸的一个重要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号