首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。  相似文献   

2.
水溶性无机离子(WSIIs)作为PM2.5的主要化学组分,能影响大气能见度,导致重污染事件的发生。为探究新乡市大气PM2.5及其水溶性无机离子的污染特征及其来源,于2019—2020年分季节在新乡市城区开展PM2.5样品采集并分析了8种离子组分浓度。结果表明:PM2.5及总WSIIs年均浓度分别为(66.25±35.73),(33.66±24.15) μg/m3,呈冬季浓度高、夏季浓度低的特征。二次无机离子SNA(NO-3、SO2-4和NH+4)占WSIIs平均质量浓度的89.7%,且在冬季占比较高。PMF源解析结果表明,新乡市大气PM2.5中水溶性离子的主要来源有二次硝酸盐、二次硫酸盐、燃烧源和扬尘源。结合后向轨迹分析得出,来自京津冀及河南省西南部地区的低空低速气流对观测站点PM2.5浓度影响较大,该气团所对应的二次硫酸盐和二次硝酸盐对WSIIs的贡献较大;来自西北方向的气团对应较高的Ca2+和Mg2+浓度占比和较大的扬尘源贡献。该研究结果有助于了解WSIIs的污染特征及来源,可为颗粒物污染防治提供参考。  相似文献   

3.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1  
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

4.
漯河市PM10和PM2.5中水溶性离子浓度特征及其来源解析   总被引:1,自引:0,他引:1  
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

5.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%.当污染加重,水溶性离子...  相似文献   

6.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   

7.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

8.
为探究安阳市大气PM2.5中水溶性离子的污染特征及其来源,于2018~2019年的典型月份在安阳市采集PM2.5样品,使用离子色谱测试了9种水溶性离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO3-和SO2-4).开展了PM2.5和水溶性离子浓度水平的分析、阴阳离子平衡和氮氧化率(NOR)、硫氧化率...  相似文献   

9.
为探究郑州市PM_(2.5)中水溶性离子污染特征,本研究自2017年12月1日至2018年11月30日对郑州市PM_(2.5)中水溶性离子进行为期1a的高时间分辨率持续观测,并基于高时间分辨率观测数据分析水溶性离子特征并对其进行来源分析.结果表明,观测期间郑州市总水溶性离子平均质量浓度为42. 7μg·m~(-3),各离子质量浓度从大到小分别为:硝酸根(17. 7μg·m~(-3))、硫酸根(10. 2μg·m~(-3))、铵根(9. 0μg·m~(-3))、氯离子(2. 3μg·m~(-3))、钾离子(1. 3μg·m~(-3))、钠离子(1. 3μg·m~(-3))、钙离子(0. 8μg·m~(-3))和镁离子(0. 1μg·m~(-3)).总水溶性离子质量浓度表现为冬季最高,秋季略高于春季,夏季最低的季节特征,在PM_(2.5)中的占比表现为秋季(65. 2%)冬季(52. 5%)夏季(48. 2%)春季(43. 0%).除钠离子和钙离子外,其余水溶性离子质量浓度均表现为冬季秋季春季夏季的季节变化特征,而钠离子表现为秋季最高,夏季最低的季节变化特征,钙离子表现为秋季最高,冬季最低的季节变化特征.总水溶性离子质量浓度全年及春季、夏季和秋季均表现为单峰分布的日变化特征,冬季没有显著的日变化特征.观测期间二次离子(硫酸根、硝酸根和铵根)质量浓度占PM_(2.5)的43. 8%,是PM_(2.5)的重要组成部分,主要以(NH4)2SO4和NH4NO3的形式存在.观测期间郑州市存在较大程度的二次转化过程,且相对湿度对硫氧化率的影响较大,而温度对氮氧化率的影响较大.观测期间二次离子间具有较好的相关性,钾离子与镁离子和氯离子也表现出较好的相关性.硝酸根、硫酸根和铵根的主要来源是气体污染物的二次转化,镁离子和钙离子通常来源于土壤尘和建筑尘,钾离子是主要的生物质燃烧标识物之一,钠离子来自于海盐和土壤尘,氯离子不仅来自于海盐,也可来自生物质燃烧和化石燃料燃烧.主成分分析结果表明观测期间郑州市PM_(2.5)中水溶性离子主要受二次转化、燃烧源及土壤或建筑扬尘源排放影响.  相似文献   

10.
为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市区及武清区PM2.5中水溶性离子组分主要为二次离子(SO42-、NO3-、NH4+);不同区域PM2.5中二次离子各季节占比略有不同,市区为夏季(54.0%)>秋季(42.5%)>春季(41.3%)>冬季(40.7%),武清区为夏季(53.0%)>春季(44.6%)>秋季(43.4%)>冬季(33.2%).②冬季市区、武清区PM2.5中水溶性离子组成差异较大,其他季节水溶性离子组成相似;夏季市区及武清区颗粒物呈酸性,其他季节均呈碱性,冬季武清区颗粒物碱性强于市区.③不同季节市区及武清区PM2.5中SO42-均以(NH42SO4形式存在,NO3-冬季以NH4NO3形式存在,其他季节NO3-主要以NH4NO3和HNO3形式共存;市区Cl-主要以NH4Cl、KCl和NaCl形式存在,武清区Cl-主要以NH4Cl、KCl形式存在.④对市区及武清区来说,均相反应和非均相反应是SO42-重要生成途径,均相反应是生成NO3-的主要途径.研究显示,代表一次排放的机动车源、燃煤源和二次无机粒子混合源对天津市PM2.5中水溶性离子贡献率最高,工业源和扬尘源对市区的影响较大,农业源对武清区的影响较大.   相似文献   

11.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

12.
    
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

13.
邯郸市PM2.5中水溶性无机离子污染特征及来源解析   总被引:3,自引:1,他引:3       下载免费PDF全文
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO42-、NO3-、NH4+是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)> 冬(85.6%)> 秋(85.5%)> 春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO42-在四季中均以(NH4)2SO4的形式存在.NO3-在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO42-的主要生成途径,夏、冬季也伴随有非均相反应. NO3-的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

14.
本研究基于采样分析与WRF-CAMx-PSAT模式分析了2018年1月北京和唐山PM2.5的组分特征、传输特征和来源解析.结果表明,2018年1月北京和唐山水溶性无机离子占PM2.5质量浓度的49.59%和39.13%,两地NO3-/SO42-分别为2.02和1.51,均受移动源主导,北京和唐山PM2.5外来贡献分别占总浓度的48.74%和30.67%,除此之外主要受到邻近局地、西北通道和西南通道这3个方面的污染输送.在污染日时段,两地受西南通道污染贡献分别上升9.65%和15.02%.北京PM2.5污染浓度贡献最大的是移动源和扬尘源,二次离子受区域输入影响较为明显,唐山则以移动源和工业源为主,且一次颗粒物和SO42-的本地贡献十分显著.与2013年相比,水溶性离子主导组分由SO42-向NO3-转变,主要污染源由燃煤源和工业源向移动源和扬尘源转变,同时2018年气象条件对于污染的缓解也比2013年更为有利,其中二次离子的气象影响变化与这两年的相对湿度变化差异紧密相关.  相似文献   

15.
  总被引:1,自引:0,他引:1       下载免费PDF全文
In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km2. In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.  相似文献   

16.
为探究聊城市冬季PM_(2.5)中水溶性物质的昼夜变化特征及其来源,于2017年1~2月进行PM_(2.5)样品采集,对其水溶性无机离子、乙二酸和左旋葡聚糖等水溶性化合物进行分析,并采用主成分分析-多元线性回归模型(PCA-MLR)对其来源进行解析.结果表明,采样期间聊城市PM_(2.5)平均质量浓度为(132. 6±65. 4)μg·m-3,是国家二级标准的1. 8倍,且夜晚PM_(2.5)的污染程度略高于白天. SNA(SO24-、NO3-和NH4+)是聊城市PM_(2.5)中最主要的水溶性离子,在白天与夜晚占总离子的质量分数为73. 4%和77. 1%,说明聊城市冬季二次污染较严重.白天与夜晚阴阳离子平衡当量比值(AE/CE)都小于1,说明PM_(2.5)呈碱性,且夜晚PM_(2.5)的酸性比白天强.无论在白天还是晚上,NH4+的主要存在形态均为NH4HSO4和NH4NO3.通过相关性分析,证实了乙二酸是在液相中经酸催化的二次氧化反应形成的,且受生物质燃烧的影响很强.通过PCA-MLR模型分析可知,聊城市冬季PM_(2.5)中的水溶性化合物主要来自机动车尾气及其二次氧化、生物质燃烧,而受矿物粉尘与煤炭燃烧的影响较小.  相似文献   

17.
周瑶瑶  马嫣  郑军  崔芬萍  王荔 《环境科学》2015,36(6):1926-1934
为了探讨霾天下大气细颗粒物(PM2.5)中水溶性离子的污染特征及其对大气消光的影响,在2013年1月25日至2月3日于南京北郊进行了PM2.5连续在线监测.利用颗粒物-液体转换采集系统(PILS)连续采集水溶性样品,与离子色谱联用分析了其中SO2-4、NO-3、NH+4、Cl-、Na+、K+、Mg2+和Ca2+的含量;同时采用扫描电迁移率粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)测量细粒子的粒径谱分布;采用三波长光声黑碳光度计(PASS-3)实时在线测量细粒子的散射和吸收消光系数;并实时监测痕量气体浓度.结果表明,观测期间霾与非霾天PM2.5中水溶性离子的总质量浓度分别为70.3μg·m-3和22.9μg·m-3;二次吸湿性组分SO2-4、NO-3和NH+4为主要的污染离子.霾天有利于SO2和NOx向SO2-4和NO-3的转化,尤其是NOx的氧化.运用多元线性回归统计方法,建立了PM2.5干消光系数与气溶胶化学成分之间的经验公式,发现NH4NO3对南京冬季消光的贡献最大,其次为(NH4)2SO4、有机碳(OC)和元素碳(EC).两次重污染事件中,污染前体物的一次排放和二次转化的增加分别是造成离子浓度升高的主要原因.  相似文献   

18.
为研究本溪市大气PM2.5中水溶性离子污染特征,于2016年1—10月在本溪市开展PM2.5样品采集,使用离子色谱法分析了其中8种水溶性离子(Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+),并采用PMF(positive matrix factorization,正矩阵因子分解法)模型对水溶性离子的来源进行分析.结果表明:观测期间,本溪市ρ(PM2.5)平均值为(57.6±21.9)μg/m3,ρ(PM2.5)季节性变化特征明显,呈冬季 > 秋季 > 春季 > 夏季趋势;水溶性离子平均质量浓度为19.3 μg/m3,占ρ(PM2.5)的33.6%,各离子质量浓度高低顺序为SO42- > NO3- > NH4+ > Cl- > Ca2+ > K+ > Na+ > Mg2+;SNA(SO42-、NO3-和NH4+)是PM2.5中主要的3种离子,在春季、夏季、秋季和冬季分别占水溶性离子的73.2%、88.2%、82.5%和73.6%,表明夏季的二次污染较为严重.阴、阳离子电荷平衡分析结果显示,阴离子相对亏损,本溪市PM2.5整体呈弱碱性,NO3-、SO42-与NH4+相关性较高,其在PM2.5中主要以NH4NO3和NH4HSO4的形式存在. PMF分析结果表明,本溪市PM2.5中水溶性离子的来源主要包括二次转化源、燃煤源和扬尘源.研究显示,本溪市PM2.5中水溶性离子季节性变化特征明显,二次转化源、燃煤源和扬尘源是其主要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号