共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。 相似文献
3.
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主. 相似文献
4.
5.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策. 相似文献
6.
对长沙市3个采样点夏季大气中的PM10和PM2.5样品pH值和水溶性离子浓度进行了定量分析.结果表明,颗粒物中主要离子是SO42-、NO3-、NH 和Ca2 ;PM10、PM2.5、NH4 和K 浓度夜间高于白天;SO42-和NO3-则相反.颗粒物尤其是PM2.5酸性强;Mg2 、Ca2和Na 集中在粗粒子中,SO42-、NH4 和K 大部分分布在细颗粒物中,NO3-和Cl-在粗细颗粒段则各占一半.SO2气体发生了二次转化,NO2的转化率不及SO2;由于NO3-/SO42-质量比<1,长沙市的大气污染物来源以固定源为主. 相似文献
7.
为探究郑州市PM_(2.5)中水溶性离子污染特征,本研究自2017年12月1日至2018年11月30日对郑州市PM_(2.5)中水溶性离子进行为期1a的高时间分辨率持续观测,并基于高时间分辨率观测数据分析水溶性离子特征并对其进行来源分析.结果表明,观测期间郑州市总水溶性离子平均质量浓度为42. 7μg·m~(-3),各离子质量浓度从大到小分别为:硝酸根(17. 7μg·m~(-3))、硫酸根(10. 2μg·m~(-3))、铵根(9. 0μg·m~(-3))、氯离子(2. 3μg·m~(-3))、钾离子(1. 3μg·m~(-3))、钠离子(1. 3μg·m~(-3))、钙离子(0. 8μg·m~(-3))和镁离子(0. 1μg·m~(-3)).总水溶性离子质量浓度表现为冬季最高,秋季略高于春季,夏季最低的季节特征,在PM_(2.5)中的占比表现为秋季(65. 2%)冬季(52. 5%)夏季(48. 2%)春季(43. 0%).除钠离子和钙离子外,其余水溶性离子质量浓度均表现为冬季秋季春季夏季的季节变化特征,而钠离子表现为秋季最高,夏季最低的季节变化特征,钙离子表现为秋季最高,冬季最低的季节变化特征.总水溶性离子质量浓度全年及春季、夏季和秋季均表现为单峰分布的日变化特征,冬季没有显著的日变化特征.观测期间二次离子(硫酸根、硝酸根和铵根)质量浓度占PM_(2.5)的43. 8%,是PM_(2.5)的重要组成部分,主要以(NH4)2SO4和NH4NO3的形式存在.观测期间郑州市存在较大程度的二次转化过程,且相对湿度对硫氧化率的影响较大,而温度对氮氧化率的影响较大.观测期间二次离子间具有较好的相关性,钾离子与镁离子和氯离子也表现出较好的相关性.硝酸根、硫酸根和铵根的主要来源是气体污染物的二次转化,镁离子和钙离子通常来源于土壤尘和建筑尘,钾离子是主要的生物质燃烧标识物之一,钠离子来自于海盐和土壤尘,氯离子不仅来自于海盐,也可来自生物质燃烧和化石燃料燃烧.主成分分析结果表明观测期间郑州市PM_(2.5)中水溶性离子主要受二次转化、燃烧源及土壤或建筑扬尘源排放影响. 相似文献
8.
为明确银川市PM2.5中水溶性离子季节变化特征,于2016年秋冬季和2017年春夏季在银川市开展PM2.5样品采集,分析PM2.5中9种水溶性离子(Na+、NH+4、K+、Mg2+、Ca2+、F-、Cl-、NO-3、SO2-4).结果表明:PM2.5中9种水溶性离子平均浓度和为(23.5±16.8)μg∕m3,占PM2... 相似文献
9.
为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市区及武清区PM2.5中水溶性离子组分主要为二次离子(SO42-、NO3-、NH4+);不同区域PM2.5中二次离子各季节占比略有不同,市区为夏季(54.0%)>秋季(42.5%)>春季(41.3%)>冬季(40.7%),武清区为夏季(53.0%)>春季(44.6%)>秋季(43.4%)>冬季(33.2%).②冬季市区、武清区PM2.5中水溶性离子组成差异较大,其他季节水溶性离子组成相似;夏季市区及武清区颗粒物呈酸性,其他季节均呈碱性,冬季武清区颗粒物碱性强于市区.③不同季节市区及武清区PM2.5中SO42-均以(NH4)2SO4形式存在,NO3-冬季以NH4NO3形式存在,其他季节NO3-主要以NH4NO3和HNO3形式共存;市区Cl-主要以NH4Cl、KCl和NaCl形式存在,武清区Cl-主要以NH4Cl、KCl形式存在.④对市区及武清区来说,均相反应和非均相反应是SO42-重要生成途径,均相反应是生成NO3-的主要途径.研究显示,代表一次排放的机动车源、燃煤源和二次无机粒子混合源对天津市PM2.5中水溶性离子贡献率最高,工业源和扬尘源对市区的影响较大,农业源对武清区的影响较大. 相似文献
10.
为研究黄石市大气PM2.5中水溶性离子组成、质量浓度变化特征及来源,于2012年3月-2013年2月在湖北省黄石市利用MiniVol颗粒物采样器采集PM2.5样品,用离子色谱分析了9种水溶性离子(NH4+、Ca2+、Mg2+、Na+、K+、Cl-、NO3-、SO42-、F-)的质量浓度,并采用PMF(正定矩阵因子分析法)模型讨论了不同离子的来源.结果表明:观测期间黄石市大气PM2.5中ρ(总水溶性离子)的年均值为(61.5±26.8)μg/m3,占ρ(PM2.5)的63.9%,各离子质量浓度的高低顺序依次为ρ(SO42-)> ρ(NO3-)> ρ(NH4+)> ρ(Na+)> ρ(Cl-)> ρ(Ca2+)> ρ(K+)> ρ(F-)> ρ(Mg2+).二次无机离子SNA(为SO42-、NO3-和NH4+的统称)是水溶性离子的主要成分,占全部所测水溶性离子的74.4%.ρ(NO3-)/ρ(SO42-)范围为0.12~1.29,平均值为0.53±0.30,说明全年观测点附近主要以固定源污染为主.4个季节的SOR(硫氧化率)和NOR(氮氧化率)均大于0.10,说明黄石市PM2.5中的SO42-和NO3-主要是经二次转化形成的.阴、阳离子相关性研究发现,4个季节阴、阳离子总体相关性(R2为0.98)较好,并且全年PM2.5组分偏酸性.通过PMF模型源解析发现,黄石市大气PM2.5中水溶性离子主要来源于燃烧源、二次转化源和土壤/矿物扬尘源.研究显示,黄石市大气PM2.5中主要水溶性离子成分是SNA,燃烧、二次转化和土壤/矿物扬尘是其主要来源. 相似文献
11.
徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析 总被引:3,自引:12,他引:3
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等. 相似文献
12.
成都平原大气颗粒物中无机水溶性离子污染特征 总被引:7,自引:6,他引:7
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素. 相似文献
13.
燃煤电厂排放细颗粒物的水溶性无机离子特征综述 总被引:1,自引:7,他引:1
当前我国面临严重的大气细颗粒物(PM2.5)污染,燃煤电厂是大气中PM2.5的重要来源之一.为了实现国家"十一五"和"十二五"规划对二氧化硫(SO2)和氮氧化物(NOx)的总量减排目标,燃煤电厂大规模安装烟气脱硫和脱硝设施,这虽然减少了气态污染物转化生成的二次PM2.5,但另一方面也会对烟气中PM2.5的物理化学特征产生影响,有可能增加一次PM2.5的排放.本文综述了燃煤电厂排放PM2.5及其水溶性离子的粒径分布特征,重点介绍了脱硫和脱硝这两种烟气处理设施对燃煤电厂排放PM2.5的影响原理及相关研究结果,特别是对细颗粒物中水溶性离子(如SO2-4、Ca2+和NH+4)的影响.在目前我国PM2.5污染十分严重和燃煤电厂大量安装脱硫和脱硝装置的背景下,定量研究脱硫和脱硝对PM2.5排放特征的影响具有十分重要的意义. 相似文献
14.
为探究郑州市PM2.5的污染水平,水溶性离子组成特征并进行来源分析,于2016年四季进行PM2.5周年膜采样,每个季节连续采集30 d共采集有效样品170个.分别采用重量法测定PM2.5的质量浓度,离子色谱法测定水溶性离子浓度,并使用主成分分析法对其进行来源解析.结果表明,在采样期间郑州市PM2.5年均质量浓度为150.72μg·m-3,季节性特征明显,冬季最高,夏季最低,秋季略高于春季.NH4+、NO3-、SO42-是郑州PM2.5中最主要的无机水溶性离子,三离子之和占所测7种水溶性离子总含量的比例分别为92.55%(春)、92.94%(夏)、93.06%(秋)和93.15%(冬).阴阳离子电荷当量年均值为0.886,PM2.5呈弱碱性.春、夏季节铵盐的存在形态为NH4NO3和(NH4)2SO4,秋季铵盐的存在形式可能为NH4NO3、(NH4)2SO4和NH4HSO4,冬季NH4+除上述3种存在形式外,可能还以NH4Cl或其他形式存在.郑州市大气中存在较强的SO2、NO2二次转化过程,水溶性离子的主要来源是二次转化过程,化石燃料和生物质燃烧、矿尘、农业活动以及土壤和建筑尘等. 相似文献
15.
苏州市PM2.5中水溶性离子的季节变化及来源分析 总被引:2,自引:27,他引:2
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等. 相似文献
16.
为研究京津冀地区典型城市大气细颗粒物及其碳质组分的时空变化特征及来源,于2016年12月28日—2017年1月22日及2017年7月1—26日,对北京市与石家庄市PM2.5(细颗粒物)及PM1(亚微米颗粒物)进行采集,使用DRI(热光碳分析仪)检测PM2.5与PM1中ρ(OC)与ρ(EC),并对其碳质组分来源进行分析.结果表明:①采样期间,冬、夏两季PM2.5与PM1中ρ(OC)均为石家庄市采样点远高于北京市采样点;冬季PM2.5与PM1中ρ(EC)均为石家庄市采样点高于北京市采样点,夏季则略有不同.②冬季污染日,北京市采样点ρ(PM2.5)与ρ(PM1)均为石家庄市采样点的1.08倍,PM2.5与PM1中的ρ(OC)分别为石家庄市采样点的1.14和1.12倍,石家庄市采样点PM2.5与PM1中ρ(EC)分别为北京市采样点的1.15和1.28倍;冬季重污染日,北京市采样点的ρ(PM2.5)与ρ(PM1)分别为石家庄市采样点的1.03和1.04倍,PM2.5和PM1中的ρ(OC)分别为石家庄市采样点的1.23和1.22倍,石家庄市采样点PM2.5和PM1中的ρ(EC)分别为北京市采样点的1.03和1.16倍.夏季污染日,石家庄市采样点ρ(PM2.5)与ρ(PM1)分别为北京市采样点的1.16和1.30倍,PM2.5与PM1中ρ(OC)分别为北京市采样点的1.64和2.71倍,两个采样点ρ(EC)相近.③冬、夏两季PM2.5与PM1中ρ(SOC)/ρ(OC)均较高,冬季北京市采样点分别为48.09%和54.29%,石家庄市采样点分别为44.98%和48.09%,夏季北京市采样点分别为48.47%和61.50%,石家庄市采样点分别为61.52%和63.55%,表明SOC更易富集于亚微米粒子中.④冬季北京市和石家庄市两个采样点PM2.5与PM1中碳质组分均主要来源于生物质燃烧、燃煤和机动车尾气;夏季北京市采样点PM2.5与PM1中碳质组分主要来源于机动车尾气,石家庄市采样点PM2.5与PM1中碳质组分主要来源于燃煤和机动车尾气.研究显示,北京市和石家庄市两个采样点大气细颗粒物及其碳质组分浓度存在时空分布和污染来源差异. 相似文献
17.
为明确威海市采暖期细颗粒物的组分及来源,于2018年1~3月在威海市3个空气质量例行监测点采集了环境空气PM2.5样品,分析OC、EC、水溶性离子及元素组分特征,利用PMF模型解析PM2.5的来源.结果表明,采样期间威海市PM2.5日均质量浓度为(33.80±22.45)μg·m-3,NO-3、NH+4、SO■、OC和EC是其主要组分.作为沿海城市其Cl-占比相对较高,同时PM2.5组分特征体现出颗粒物成分受本地工业特征污染物排放的影响.NO-3/SO■和OC/EC比值均表明威海市采暖期移动源对PM2.5贡献大;水溶性离子中酸碱离子比例分析表明,威海市采暖期PM2.5呈弱碱性,NH+4过量,主要以NH4NO3... 相似文献
18.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大. 相似文献
19.
天津市环境空气中细粒子的污染特征与来源 总被引:18,自引:6,他引:18
于2006年8─12月,在天津市中心城区采集细粒子(PM2.5)并测定其中水溶性无机离子和元素的质量浓度,应用因子分析与多元线性回归技术解析PM2.5的来源. 结果表明:ρ(PM2.5)月均值为103.9~217.4 μg/m3,呈冬季最高、夏季最低的特征. 水溶性无机离子质量浓度占ρ(PM2.5)的比例为24.90%~49.76%,其中ρ(SO42-),ρ(NO3-),ρ(NH4+)与ρ(Cl-)之和约占离子总质量浓度的90%. 在夏季,二次粒子质量浓度占ρ(PM2.5)比例最大,这与SO2向SO42-,NO2向NO3-的转化率升高有关. PM2.5中Cl富集主要与燃煤等人为排放有关, 海盐源对Cl-的贡献不足20%. 天津PM2.5中含量最高的元素为Si,约占元素总质量浓度的28.4%. 微量元素中以Zn和Pb的含量最高,二者主要来自燃煤和机动车排放. 源解析结果表明,二次污染、化石燃料燃烧、土壤尘和建筑粉尘是天津市环境空气中PM2.5的主要来源,贡献率分别为53.4%,25.8%,12.3%和8.6%. 相似文献
20.
2017~2018年北京大气PM2.5中水溶性无机离子特征 总被引:4,自引:7,他引:4
为探究近年来北京市空气质量持续改善过程中PM2.5及其中水溶性无机离子(WSIIs)特征,于2017~2018年在北京城区进行了连续1 a的PM2.5样品采集,对其中9种主要WSIIs进行了全面分析.结果表明,北京市PM2.5年均浓度为(77.1±52.1)μg ·m-3,最高和最低值分别出现在春季[(102.9±69.1)μg ·m-3]和夏季[(54.7±19.9)μg ·m-3].WSIIs年均浓度为(31.7±30.1)μg ·m-3,对PM2.5贡献比例为41.1%,季节贡献特征为:秋季(45.9%) > 夏季(41.9%) > 春季(39.9%) ≥ 冬季(39.2%).SNA是WSIIs的重要组成,春、夏、秋和冬季在总WSIIs中的占比分别可达86.0%、89.5%、74.6%和73.0%.随温度升高,NO3-和SO42-分别呈现出了先升高后降低以及波动性升高的趋势;而当相对湿度低于90%时,2种离子浓度均随相对湿度增加而升高,反映了光化学和液相过程对2种离子组分的贡献差异.随污染加重,WSIIs整体贡献比例大幅升高,且各类WSIIs演化特征各异,其中,NO3-浓度和贡献均持续升高,而SO42-和各类源自扬尘的离子组分(Mg2+、Ca2+和Na+)贡献降低.观测期间WSIIs主要来源包括二次转化、燃烧源和扬尘源,对燃煤和机动车的管控是其减排的重要途径.后向轨迹分析表明,源自北京市南部和西部的气团对应着较高的PM2.5浓度和WSIIs占比,且二次离子贡献显著;而源自西北和北部的气团对应的PM2.5浓度和WSIIs占比则较低,但Ca2+贡献较高. 相似文献