首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
使用中流量颗粒物采样器采集台州市2015—2016年大气PM_(2.5)样品,利用气相色谱-质谱仪对样品中16种多环芳烃(PAHs)进行分析,研究PAHs的污染特征及可能来源。结果显示:PAHs总浓度为(20.69±4.84)ng/m3,浓度季节变化大小顺序依次为冬季>春季>秋季>夏季,空间变化为商住区>工业区>背景点。PM_(2.5)中PAHs以高环为主(≥4环),占86%。不同季节商住区和工业区PAHs(4环)含量均略高于背景点,PAHs(5~6环)的含量商住区略高于工业区和背景点。PAHs环数分布和比值法结果表明台州市大气PM_(2.5)中PAHs的主要来源是机动车尾气和燃煤。成年人和儿童的终生超额致癌风险(ILCR)分别为8.02×10-7和5.61×10-7,表明台州市PM_(2.5)中PAHs对人体健康影响在可接受范围内。  相似文献   

2.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大.  相似文献   

3.
河南省焦作市作为典型的以煤炭为主要能源的中级工业化城市,研究其城市转型过程中大气环境污染现状及污染物来源具有一定的指示意义。通过采集2013-2014年焦作市4个季度82个PM_(2.5)样品,对其中的16种优控的多环芳烃(PAHs)的含量与组成进行了测定与分析,并对多环芳烃进行了源解析。研究结果表明,焦作市大气中PM_(2.5)的浓度范围为51.32~270.12μg/m~3,平均为152.16μg/m~3;PM_(2.5)中总多环芳烃(TPAHs)的浓度范围是7.6~672.5 ng/m~3,平均为119.22 ng/m~3,其浓度随季节变化明显,冬季秋季春季夏季;PAHs中Ba P的平均浓度为11.93 ng/m~3,BaP当量浓度为30.43 ng/m~3,过量致癌风险值(ICR)达到264.74×10~(-5);多环芳烃组成以4~6环PAHs为主,占TPAHs总量的90%以上,浓度最高的是BghiP、BbF和IcdP。应用特征比值法和主成分分析法对PAHs进行了源解析,显示燃煤和机动车排放是2个最主要的排放源。  相似文献   

4.
在海口市布设2个采样点,于2014年秋冬季节采集大气PM_(2.5)样品,采用超声萃取和GC/MS分析了PM_(2.5)中优先控制的16种PAHs,探讨了其含量分布特征,对PAHs健康风险进行了评价,并运用比值法定性解析其可能来源。研究结果表明:2个采样点秋冬季节PAHs平均质量浓度为4.825、6.771 ng/m3,其中以Pyr浓度最高;PM_(2.5)中以分子量大的化合物为主,其中4环PAHs所占比率最高,达到38.9%以上;秋季和冬季BEQ日均值分别为0.577、0.691 ng/m~3,均低于国内外BaP限值标准;比值法分析PM_(2.5)中PAHs来源,最主要的贡献源为机动排放车,同时兼有木材燃烧源的特征。  相似文献   

5.
为探究遵义市秋、冬季PM2.5中多环芳烃(PAHs)的污染特征及来源,于2020年10月~2021年1月采集了遵义市大连路、忠庄和新蒲3个采样点位PM2.5样品,利用GC-MS对样品中16种优控PAHs进行分析,利用特征比值法和多元统计法(PCA-MLR)解析其来源,并采用BaP毒性当量浓度和终生致癌风险模型(ILCR)探讨了PAHs对人体的健康风险。结果表明,研究期间遵义市PM2.5中16种PAHs浓度范围为9.68~108.80 ng/m3,平均值为(30.53±22.63)ng/m3,呈冬季高、秋季低的季节变化趋势。秋、冬季PM2.5中PAHs环数分布特征一致,高环(5~6环)>中环(4环)>低环(2~3环),以中环、高环PAHs为主。PCA-MLR分析表明PAHs主要来自燃煤和生物质燃烧混合源、机动车尾气,其中,燃煤和生物质燃烧对颗粒物中PAHs的来源贡献最大,秋季为50.6%,冬季为54.8%。遵义市冬季PAHs总毒性当量浓度(TEQ...  相似文献   

6.
2014年在新疆和田市城区分冬、春、夏、秋4个季节采集大气PM2.5样品,分析了其中16种多环芳烃(PAHs)的含量、组成和来源,并评估了其致癌风险。结果表明:PAHs浓度年均值为99.02 ng/m~3,且具有明显的季节性分布,即冬季(241.52 ng/m~3)秋季(87.50ng/m~3)春季(30.81 ng/m~3)夏季(10.39 ng/m~3),冬季苯并[a]芘(Ba P)的浓度高达16.57 ng/m~3;全年PAHs以4~6环为主,冬季4环PAHs比例(46.03%)明显高于夏季的比例(15.97%),表明气粒两相分配对PAHs分布有显著影响。PAHs浓度与气温和风速显著负相关,与相对湿度显著正相关,表明相对低的气温和风速、相对高的湿度是冬季PAHs污染较高的重要原因。特征比值法源解析结果显示,PAHs主要来源于燃烧源,其中冬季PAHs来源以燃煤及薪柴燃烧为主,春、秋季以燃煤源和交通源的混合污染来源为主,夏季以交通源为主。后向轨迹分析表明,除和田市东北部的局地输送外,来自中亚、西亚其他国家外部输入的气团也对和田市城区PAHs有重要影响。苯并[a]芘毒性当量浓度(Ba P_(eq))年均值为10.51 ng/m~3,终身呼吸性肺癌风险(CR)为9.14×10~(-4),是美国环保署(USEPA)可接受致癌风险指数的9.14倍,表明和田市城区居民具有一定的潜在健康风险。  相似文献   

7.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

8.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:3,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   

9.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

10.
为了解山西省武乡县城大气PM_(2.5)污染特征及PM_(2.5)中痕量重金属的生态和健康风险,在分析县城环境空气质量状况的基础上,分别于秋季(2014-10-22~2014-11-19)和冬季(2015-01-12~2015-02-13)在武乡县环境保护局楼顶用中流量采样器采集大气PM_(2.5)样品,每天换膜一次,利用称重法计算PM_(2.5)浓度,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定样品中As、Cd、Cr、Cu、Ni、Pb、Zn 7种元素含量,运用地累积指数法、生态风险指数法、相关性分析和主成分分析、美国环保署暴露模型等表征痕量重金属的污染程度、来源、潜在的生态和健康风险等.结果表明,冬季大气PM_(2.5)浓度是秋季的3倍左右,有65%的天数超过国家环境空气质量二级标准(GB 3095-2012);PM_(2.5)中痕量重金属来源主要包括燃煤和交通等人为源,贡献率分别为58.38%和18.73%,所测重金属浓度顺序为CuZnPbCrAsNiCd,其中Cd、Cu的生态风险指数、Cr的非致癌和致癌暴露风险大于其它金属.冬季燃煤增加和大气扩散条件差是武乡县城大气PM_(2.5)浓度超标以及造成痕量重金属生态和健康风险增大的主要原因.  相似文献   

11.
重庆市北碚大气中PM2.5、NOx、SO2和O3浓度变化特征研究   总被引:4,自引:0,他引:4  
重庆是我国西南工业重镇,但长期受大气污染困扰.利用全自动在线环境监测仪器,于2012年1月—2014年2月,对重庆市北碚区大气中的典型污染物PM2.5、NO_x、SO_2和O_3进行了观测研究.结果表明:重庆北碚大气首要污染物为PM2.5,2012和2013年平均浓度分别为(67.5±31.9)和(66.6±37.5)μg·m~(-3),是国家环境空气质量一级标准35μg·m~(-3)的1.9倍,两年超过国家二级标准的天数分别为119和126 d,年超标率均大于1/3;两年NO_x,SO_2及O_3的年平均浓度分别为(57.1±24.6)和(55.1±36.6),(43.1±24.0)和(35.0±21.9)及(31.1±24.9)和(48.5±37.4)μg·m~(-3).大气污染物浓度具有明显的季节变化特征,PM2.5和NO_x冬季污染最为严重,两年冬季平均值分别比两年年平均值高33.6%、59.6%和43.2%、8.5%;O_3表现为夏高冬低;SO_2春季最高且污染最轻.大气污染物日变化显示PM2.5和NO_x浓度呈双峰日变化形式,有早晚两个峰值,与城市交通高峰相对应.SO_2和O_3浓度呈单峰日变化,前者峰值出现在午前10∶00—12∶00大气对流层被打破之后,而后者峰值出现在午后16∶00局地光化学最强之时.消减各种污染源的颗粒物直接排放,消减气态污染物SO_2和NO_x的工业排放,消减机动车NO_x和VOCs等的排放,才有可能使重庆北碚的大气污染状况得到改善.  相似文献   

12.
姜龙  何川  李金晶 《环境科学》2023,44(2):1139-1148
总结了国内外粉煤灰用于CO2捕集、利用和封存的不同技术研究进展,同时对今后的研究和机遇进行了展望.粉煤灰自身可通过直接干式、半干式、湿式和间接方法对CO2进行矿化捕集封存,在CO2矿化的同时降低粉煤灰自身重金属的浸出,并且矿化后的粉煤灰因有效降低游离CaO和MgO的含量而更适合于制作混凝土添加剂.粉煤灰也可制成活性炭、沸石和多孔二氧化硅等产品,并对CO2进行物理吸附捕集,制成产品的类型主要取决于粉煤灰自身的成分组成和理化性质.在CO2利用方面,粉煤灰除了可拓展建材的利用途径外,还可制作CO2多种化学工艺所需催化剂或催化剂载体,以及制作新型材料拟薄水铝石等.我国“双碳”目标的提出及燃煤电厂粉煤灰自身的理化特性为粉煤灰提供了一条新的综合利用途径.  相似文献   

13.
夏季渤海NOx、O3、SO2和CO浓度观测特征   总被引:6,自引:2,他引:6  
利用2000-08~2000-09渤海海上观测资料,初次揭示了渤海污染物浓度的时间变化特点,分析了光照、天气等因素对NOx、O3、SO2和CO气体浓度的影响.SO2浓度比较稳定,浓度平均值在0.006 mg·m-3左右.O3浓度变化主要受辐射影响.在弱天气形势下,CO和NOx浓度分别在2.5~3.5 mg·m-3.和0.1 mg·m-3左右,台风天气会造成浓度在短时间内的剧烈增长.文中还简要说明了渤海大气污染与陆地污染的差异,评价了渤海夏季的空气质量.  相似文献   

14.
北京地区SO2、NOx、O3和PM2.5变化特征的城郊对比分析   总被引:14,自引:11,他引:14  
刘洁  张小玲  徐晓峰  徐宏辉 《环境科学》2008,29(4):1059-1065
2006-01-01~2006-12-31在北京上甸子区域大气本底站和城区宝联环境观测站连续观测了SO2、NOx、O3和PM2.5的浓度,分析了北京城区和郊区的季节变化及日变化的差异,并结合风向讨论了城区污染对于大气本底的影响.结果表明,①NOx、SO2浓度在采暖季城郊差异最大,城区是本底的4~6倍,城郊O3有一致的浓度变化.本底站PM2.5在4、5月达到100μg/m3以上,是年平均的2~3倍;②NOx和SO2的日变化在城区表现为双峰型,在09:00前后和22:00前后形成高值,郊区表现为单峰型,在22:00前后出现高值.郊区O3的日变化峰值滞后于城区大约2 h.PM2.5日变化规律表现得较不规则;③西南风条件下本底各污染物浓度明显受城区输送影响而升高,东北风条件下干洁气团的影响比较明显.  相似文献   

15.
河北张家口市大气污染观测研究   总被引:5,自引:1,他引:4  
冀北重镇张家口,全年干旱少雨风沙大,自然生态环境极其脆弱,但近年来工业发展极为迅速.为了解张家口市大气污染物浓度水平及季节变化,2009年12月1日~2010年11月30日,利用自动在线仪器对张家口市区大气典型污染物NOx、SO2、O3和PM10进行了连续观测研究.结果表明,张家口市首要污染物为可吸入颗粒物(PM10),年均质量浓度达(137±105)μg.m-3.NO、NO2、SO2和O3年均质量浓度分别为:(8±13)、(30±15)、(19±26)和(54±35)μg.m-3.NOx和SO2质量浓度冬季最高,分别达(51±35)μg.m-3和(42±29)μg.m-3;夏季最低,分别为(28±8)μg.m-3和(4±3)μg.m-3.O3质量浓度夏季最高,达(92±40)μg.m-3,最高小时均值可达271μg.m-3;冬季最低,为(34±20)μg.m-3.PM10质量浓度春季最高,达(144±131)μg.m-3;冬季最低,为(130±129)μg.m-3,但季节变化不明显.依照国家二级标准PM10日均值超标率为28%.季节统计日变化显示NOx和PM10为早晚双峰型,SO2为午间单峰型,O3为午后单峰型.张家口市区大气污染日变化受到交通源显著影响,气态污染物冬季受取暖燃煤显著影响.夏季东南气流对张家口O3有输送作用,自西北的沙尘及局地扬尘(浮尘)对张家口PM10影响显著,并对华北平原区域造成一定影响.  相似文献   

16.
With regard to automotive traffic, a tunnel-type semi enclosed atmosphere is characterized by a higher concentration of gaseous pollutants than on urban traffic roads and highlights the gaseous effluent species having an impact on material degradation. Therefore, a transverse approach between air quality and its consequences upon the longevity of materials is necessary, implying better knowledge of tunnel atmosphere and a better understanding of material degradation inside a tunnel for operating administration. Gaseous pollutant measurements carried out in a road tunnel in Rouen (Normandy) give the real world traffic concentrations of experimental exposure conditions. The sampling campaigns, achieved in summer and winter include SO2, NO2, BTEX and aldehyde analyses. Effluent profiles in the upward and downward tubes have been established. The current work shows that SO2, NO2, formaldehyde, acetaldehyde, propanal and butanal must be considered in the degradation process of materials in a stuffy environment. As regards NO2, its concentration depends on the modification of the automotive fleet. The total aldehyde concentrations indicate no particular trend between the two bores. Formaldehyde, acetaldehyde, propanal, butanal and acrolein species are the most abundant species emitted by vehicles and represent 90% to 95% of the total aldehyde emissions.  相似文献   

17.
We herein used Fe3O4 nanoparticles(NPs) as an adsorption interface for the concurrent removal of gaseous benzene, toluene, ethylbenzene and m-xylene(BTEX) and sulfur dioxide(SO2), at different relative humidities(RH). X-ray diffraction, Brunauer–Emmett–Teller, and transmission electron microscopy were deployed for nanoparticle surface characterization.Mono-dispersed Fe3O4(Fe2O3·Fe O) NPs synthesized with oleic acid(OA) as surfactant, and uncoated poly-dispersed Fe3O4 NPs demonstrated comparable removal efficiencies.Adsorption experiments of BTEX on NPs were measured using gas chromatography equipped with flame ionization detection, which indicated high removal efficiencies(up to(95 ± 2)%) under dry conditions. The humidity effect and competitive adsorption were investigated using toluene as a model compound. It was observed that the removal efficiencies decreased as a function of the increase in RH, yet, under our experimental conditions, we observed(40 ± 4)% toluene removal at supersaturation for Fe3O4 NPs, and toluene removal of(83 ± 4)% to(59 ± 6)%, for OA-Fe3O4 NPs. In the presence of SO2, the toluene uptake was reduced under dry conditions to(89 ± 2)% and(75 ± 1)% for the uncoated and coated NPs, respectively, depicting competitive adsorption. At RH 100%,competitive adsorption reduced the removal efficiency to(27 ± 1)% for uncoated NPs whereas OA-Fe3O4 NPs exhibited moderate efficiency loss of(55 ± 2)% at supersaturation.Results point to heterogeneous water coverage on the NP surface. The magnetic property of magnetite facilitated the recovery of both types of NPs, without the loss in efficiency when recycled and reused.  相似文献   

18.
养殖塘作为重要的温室气体排放源,水体中温室气体浓度的变化不仅是准确量化温室气体排放量的基础,还是明确其影响因素的重要依据.基于顶空平衡-气相色谱仪法对长三角一处典型的小型养殖塘水体中CH4、CO2和N2 O浓度的时空变化特征以及影响因素进行了分析.结果表明,除春季外,在水温影响下,CH4和N2 O浓度在午间或午后出现高值;受水温和水生植物光合作用影响,CO2浓度的高值出现在晨间光合作用较弱的时候.养殖塘水体中CH4和CO2浓度呈现秋季最高、冬季最低的季节变化特征,c(CH4)在秋季和冬季的均值分别为176.34 nmol·L-1和32.75 nmol·L-1,主要受气温、水温和溶解氧(DO)影响;c(CO2)秋季和冬季的均值分别为134.37 μmol·L-1和23.10 μmol·L-1,主要受水生植物光合作用和pH影响;c(N2 O)在夏季最高,冬季最低,均值分别为97.05 nmol·L-1和19.41 nmol·L-1,主要受气温和水温影响.在空间上,垂直方向上,夏季养殖塘c(CH4)随水深的加深而降低,表层与底层、中间层的浓度差值为71.28 nmol·L-1和42.80 nmol·L-1,秋季随水深的加深而升高,底层与表层的浓度差值为163.94 nmol·L-1.c(CO2)在夏季和秋季都表现为随着水深的加深而升高,其底层与表层的浓度差值分别为18.69 μmol·L-1和29.90 μmol·L-1.N2 O浓度在垂直方向上无明显变化规律.水平方向上,夏季饲料及春季鸡粪投放的区域会出现CH4、CO2和N2 O浓度的高值,春季和夏季CH4浓度约为其他区域的1.34~1.98倍和1.95~2.42倍,春季N2 O浓度和夏季CO2浓度约为其他区域的1.13~1.26倍和1.39~1.74倍.  相似文献   

19.
重庆市北碚城区大气污染物浓度变化特征观测研究   总被引:21,自引:6,他引:15  
为了研究重庆市北碚区大气污染物浓度变化特征及其污染状况,采用全自动在线监测仪器对重庆市北碚城区大气污染物进行连续在线监测,分析了2012年1月~2013年2月的大气污染物观测数据.结果表明,除SO2以外,其它污染物均有超出国家新环境空气质量标准(GB 3095-2012)的情况出现,其中细粒子污染最严重.大气污染物浓度具有明显的季节变化,2012年春夏秋冬季各污染物平均浓度:O3为(36.1±19.2)、(48.8±32.6)、(29.8±28.6)、(18.2±15.8)μg·m-3,Ox为(77.6±20.6)、(91.3±37.6)、(77.5±30.6)、(69.4±18.2)μg·m-3,表现为夏高冬低;NO为(11.8±9.4)、(8.2±4.9)、(20.7±17.1)、(30.4±25.1)μg·m-3,NO2为(42.3±13.1)、(40.5±9.9)、(47.2±14.1)、(51.2±15.9)μg·m-3,NOx为(54.1±20.8)、(48.7±12.6)、(67.9±25.5)、(81.6±37.9)μg·m-3,均表现为冬高夏低;SO2为(50.5±23.3)、(26.3±16.7)、(38.8±18.4)、(53.7±23.4)μg·m-3,表现为冬春高而夏秋低;而PM2.5则为(61.4±28.5)、(68.1±32.5)、(61.9±27.1)、(89.6±44.2)μg·m-3,表现出冬季高而其它季节比较平稳的特征.O3、Ox、NO、NOx以及SO2浓度均为单峰型的日变化形式,其中O3和Ox的日变化峰值出现在午后16:00,而NO、NOx及SO2的日最大值则出现在08:00~11:00;NO2和PM2.5的日变化模态呈双峰型,有早晚两个峰值.O3和Ox在夏季日变化振幅最大,而其它污染物则冬季日变化振幅最大.将工作日与周末各污染物浓度的日变化相比,成对t检验分析表明,NO并无明显差异(P=0.14),但N2O工作日显著高于周末(P=0.03),而O3则为工作日极显著低于周末(P<0.001).相关分析表明,O3浓度与气温和风速呈显著或极显著正相关,与相对湿度呈极显著负相关,而NOx则与以上各气象要素的关系正好相反;PM2.5与气温和风速呈负相关,与相对湿度呈正相关;SO2与各气象要素的关系在不同的季节表现不同.除此之外,风向也是影响大气污染物浓度的一个重要因素.  相似文献   

20.
夏秋季北京及河北三城市的大气污染联合观测研究   总被引:12,自引:7,他引:12  
吴莹  吉东生  宋涛  朱彬  王跃思 《环境科学》2011,32(9):2741-2749
为评估北京西南方向城市群对北京大气污染的影响,于2009年夏秋季节(2009年7月16日~10月15日),利用自动在线大气环境观测仪器,对北京及太行山东侧河北省的3个城市涿州、保定和石家庄进行了大气污染物PM10、NOx和O3的联合观测研究.结果表明,夏秋季节4个城市的首要污染物均为可吸入颗粒物(PM10),平均质量浓...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号