首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background, Aims and Scope

Vallisneria spiralis Linn., a common, submerged macrophyte, is widely available in quiet waters of lakes, ponds, marshes and streams in Southeast Asia. V. spiralis plays a significant role not only in decreasing eutrophication of water body for its productivity, but also in inhibiting the growth of blue-green algae? The aim of the paper involves the isolation and identification of allelochemicals from extracts of V. spiralis by activity-guided fractionation and column chromatography.

Methods

Leaves of V. spiralis was washed free of debris, air-dried and refluxed in 95% EtOH. The extract was isolated using column chromatography and fractionation with antialgal activity. Potential allelochemicals were analyzed by high-resolution gas chromatography-mass spectrometry (HRGC-MS).

Results

Two fractions with strong antialgal activity were isolated using column chromatography and activity-guided fractionation from the extract of V. spiralis. 2-Ethyl-3-methylmaleimide, dihydroactinidiolide and 4-oxo-β-Ionone were identified in the first fraction, and 3-hydroxy-5,6-epoxy-β-ionone, loliolide, 6-hydroxy-3-oxo-α-ionone and an unknown compound in the second fraction. They had strong inhibitory effects on Microcystis aeruginosa Kütz.

Discussion

2-Ethyl-3-methylmaleimide is a byproduct of photooxidation of chlorophyll, and five other compounds identified were derivatives of β-carotene. HRGC-MS and derivatization technology were used to identify and confirm their molecular structures. The formula of the unknown compound was C16H19NO4. Metabolites of plant pigments had strong inhibitory activities on growth of algae.

Conclusions

Six compounds had been identified in V. spiralis, among them, 2-ethyl-3-methylmaleimide was the main allelochemical, and derivatives of ionone were also potential allelochemicals.

Recommendations and Perspective

. The results of our research could help us to study further mechanisms of inhibitory effect on algae and develop new potential antialgal substances.  相似文献   

2.

Purpose

Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization.

Methods

Optical microscope and UV?Cvisible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett?CBurman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed.

Results

The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl2 and MgCl2, and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability.

Conclusion

Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.  相似文献   

3.

Purpose

Ciprofloxacin (CIP), a broad-spectrum, second-generation fluoroquinolone, has frequently been found in hospital wastewaters and effluents of sewage treatment plants. CIP is scarcely biodegradable, has toxic effects on microorganisms and is photosensitive. The aim of this study was to assess the genotoxic potential of CIP in human HepG2 liver cells during photolysis.

Methods

Photolysis of CIP was performed in aqueous solution by irradiation with an Hg lamp, and transformation products were monitored by HPLC-MS/MS and by the determination of dissolved organic carbon (DOC). The cytotoxicity and genotoxicity of CIP and of the irradiated samples were determined after 24?h of exposure using the WST-1 assay and the in vitro micronucleus (MN) test in HepG2 cells.

Results

The concentration of CIP decreased during photolysis, whereas the content of DOC remained unchanged. CIP and its transformation products were not cytotoxic towards HepG2 cells. A concentration-dependent increase of MN frequencies was observed for the parent compound CIP (lowest observed effect level, 1.2???mol?L?1). Furthermore, CIP and the irradiated samples were found to be genotoxic with a significant increase relative to the parent compound after 32?min (P?P?Conclusions Photolytic decomposition of aqueous CIP leads to genotoxic transformation products. This proves that irradiated samples of CIP are able to exert heritable genotoxic effects on human liver cells in vitro. Therefore, photolysis as a technique for wastewater treatment needs to be evaluated in detail in further studies, not only for CIP but in general.  相似文献   

4.

Background

This study investigated the acute effect of benzo[a]anthracene, a significant compound among polycyclic aromatic hydrocarbons, on the biodegradation of a synthetic organic substrate??a peptone/meat extract mixture??under aerobic conditions.

Methods

A laboratory-scale sequencing batch reactor was sustained at steady state at a sludge age of 10?days with substrate feeding. Inhibition tests involved running a series of batch reactors initially seeded with the biomass obtained from the parent reactor. After the biomass seeding, the reactors were started with the peptone mixture and a range of initial benzo[a]anthracene concentrations between 0.5 and 88?mg/L. Experimental profiles of oxygen uptake rates and polyhydroxyalkanoates were evaluated by calibration of a selected model.

Results

Lower doses of benzo[a]anthracene had no effect on process kinetics. The noticeable acute impact was only observed with the addition of 88?mg/L of benzo[a]anthracene, but it was limited with the storage mechanism: the amount of organic substrate diverted to polyhydroxyalkanoates was significantly reduced with a corresponding decrease in the maximum storage rate, k STO, from 2.7 down to 0.6?day?1. Similarly, the maximum growth rate from internally stored polyhydroxyalkanoates was lowered from 2.3 to 1.0?day?1.

Conclusion

Among the mechanisms for direct substrate utilization, only the hydrolysis rate was slightly reduced, but otherwise, the overall COD removal efficiency was not affected.  相似文献   

5.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

6.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

7.

Background, aim, and scope

Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1–3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions.

Materials and methods

The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography–mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises.

Results

The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg?1 soil as compared to a TPH reduction from 183.85 to 151.10 g kg?1 soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m2 area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg?1 soil in 175 days.

Discussion

Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants.

Conclusions

This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions.

Recommendations and perspectives

Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.  相似文献   

8.

Purpose

PCDD/Fs, PCBs, and PAHs, ubiquitous environmental pollutants which are part of the POPs, are mainly produced by anthropogenic activities as well as by natural processes. Occurrences of these pollutants in different sites in Trieste are presented. PCDD/Fs distribution and their possible emission sources are discussed.

Methods

Air samples were collected in different sites near the industrial area, in the city center, and in a background area, using a high-volume sampler equipped with a quartz fiber filter and a PUF. Each sampling lasted a week.

Results

The concentrations of the organochlorinated pollutants are consistent with literature data (??PCDD/Fs and ??dl-PCBs were 5?C38?fg TEQ/Nm3 and 4?C31?fg TEQ/Nm3, respectively), and an apparent seasonal trend was found with slightly higher concentrations in the winter and lower levels in both summer campaigns. Moreover, the isomer profile of each sampling campaign was compared to the fingerprint of a sintering plant, a cement plant, and an incinerator, the main industrial activities in Trieste.

Conclusions

The organic micropollutants were detected in levels consistent with literature data. The results show that the pollutants are uniformally distributed in the atmosphere of Trieste. PCDD/F fingerprints in each site remained almost identical during summer and winter, confirming the yearly prevalence of the emissions from the nearby sintering plant.  相似文献   

9.

Purpose

This study contains some new findings connected to the photolysis of the drug paracetamol (hereinafter APAP) especially in light of estimating natural conditions, and it will offer information to better evaluate environmental problems connected with this widely used analgesic agent. Only a few studies, so far, have focussed on the photodegradation process of APAP in the natural environment, and the question about the role of the colored/chromophoric dissolved organic matter (CDOM) and nitrate (NO 3 ? ) as photoinductors is almost open.

Methods

APAP dissolved in freshwater and pure laboratory water in the presence and absence of CDOM and NO 3 ? ions was irradiated using weak-energy photon energies simulating natural conditions.

Results

CDOM and NO 3 ? as photoinductors produced only the slow phototransformation of APAP under weak energy radiation, and APAP seemed to be practically resistant to direct photolysis under weak radiant energies available in natural conditions. The estimated reaction efficiencies, in addition to half-lives, speak for that NO 3 ? and CDOM do not act as quite independent photoinductors but their effect in conjunction (CDOM?CNO 3 ? ?Cwater) is stronger than the separate ones. The principal phototransformation intermediates of APAP were mono-hydroxy derivatives, depending on available photon energies formed via ortho- or meta-hydroxylation, possessing substantial power of resistance to further specific transformation reactions.

Conclusions

The estimated half-life of the phototransformation of APAP in the natural aqueous environment and in the presence of suitable photoinductors will be about 30?days or more.  相似文献   

10.

Introduction

Two semi-specific microbial biosensors were constructed for the analysis of biochemical oxygen demand (BOD) in high-cellulose-content pulp and paper industry wastewaters. The biosensors were based on living cells of Bacillus subtilis and Paenibacillus sp. immobilized in an agarose gel matrix. Semi-specific microorganisms were isolated from various samples (decaying sawdust and rabbit manure) and were chosen based on their ability to assimilate cellulose.

Materials &; methods

The biosensors were calibrated with the Organization for Economic Cooperation and Development synthetic wastewater, and measurements with different wastewaters were conducted.

Results

The response time of biosensors using the steady-state method was 20?C25 min, and the service life of immobilized microorganisms was 96 days. Detection limit was 5 mg/l of BOD7 while linear ranges extended up to 55 and 50 mg/l of the BOD7 for B. subtilis- and Paenibacillus sp.-based biosensors, respectively. Repeatability and reproducibility of both biosensors were within the limits set by APHA??less than 15.4%. In comparison, both biosensors overestimated the BOD7 values in paper mill wastewaters and underestimated the BOD7 in aspen pulp mill wastewater.

Conclusions

The semi-specific biosensors are suitable for the estimation of organic pollution derived from cellulose, while the detection of pollution derived from tannins and lignins was minor. Better results in terms of accuracy and repeatability were gained with Paenibacillus sp. biosensor.  相似文献   

11.

Purpose

In this study, we investigated the effect of diphenyl diselenide [(PhSe)2] on chlorpyrifos (CPF)-induced hepatic and hematologic toxicity in rats.

Methods

Rats were pre-treated with (PhSe)2 (5?mg/kg) via the oral route (oral gavage) once a day for 7?days. On the eighth and ninth days, rats were treated with (PhSe)2 (5?mg/kg) 30?min prior to CPF (50?mg/kg, by subcutaneous route). The aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activities were determined in plasma of rats. Lipid peroxidation, protein carbonyl, and non-protein thiol levels as well as catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and gluthatione S-transferase activities were determined in livers of rats. Hematological parameters were also determined.

Results

The results showed that CPF caused hepatic oxidative damage, as demonstrated by an increase in lipid peroxidation and protein carbonyl levels which was associated with a decrease in antioxidant defenses. CPF exposure caused a reduction in the leukocyte, indicating hematologic toxicity. (PhSe)2 was effective in attenuating these toxic effects caused by CPF exposure in rats.

Conclusions

The results indicated that (PhSe)2 was effective in protecting the hepatic and hematologic toxicity induced by acute CPF exposure in rats.  相似文献   

12.

Introduction

In this study, UV/Oxone/Co2+ oxidation process was applied to degradation of ofloxacin (OFL) in the presence of Co2+ as the catalytic and Oxone as the oxidant. The operation parameters including pH, temperature, dosages of reagents, and reaction time were studied in detail.

Results

The results showed that the optimum conditions for the UV/Oxone/Co2+ processes were determined as follows: temperature?=?25°C, pH?=?5.0, [Oxone]?=?0.6?mmol/L, [Oxone]/[Co2+]?=?1,000, and reaction time?=?60?min. Under these conditions, 100% of the OFL degraded. The kinetics was also studied, and degradation of OFL by the UV/Oxone/Co2+ process could be described by first-order kinetics.

Conclusions

Mineralization of the process was investigated by measuring the total organic carbon (TOC), and the TOC decreased by 87.0% after 60?min. This process could be used as a pretreatment method for wastewater containing ofloxacin.  相似文献   

13.

Background and purpose

The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI).

Methods

The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated.

Results

The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents (P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model.

Conclusion

The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model.  相似文献   

14.

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25?mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10?mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25?mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.  相似文献   

15.

Purpose

Chitosan with nylon 6 membranes was evaluated as adsorbents to remove copper and cadmium ions from synthetic industrial wastewater.

Methods

Chitosan and nylon 6 with glutaraldehyde blend ratio with (1:1+Glu, 1:2+Glu, and 2:1+Glu) have been prepared and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. Characterization of the synthesized membrane has been done with FTIR, XRD, TGA/DTA, DSC, and SEM. Chemical parameters for quantities of adsorption of heavy metal contamination have been done and the kinetics of adsorption has also been carried out.

Results

The optimal pH for the removal of Cd(II) and Cu(II) using chitosan with nylon 6. Maximum removal of the metals was observed at pH 5 for both the metals. The effect of adsorbent dose also has a pronounced effect on the percentage of removal of the metals. Maximum removal of both the metals was observed at 5 g/100 ml of the adsorbent.

Conclusion

Copper and cadmium recovery is parallel at all time. The percentage of removal of copper increased with increase in the pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing contact time from 0 to 360 min and then reaches equilibrium after 360 min; the equilibrium constant for copper and cadmium ions is more or less the same for the adsorption reaction.  相似文献   

16.

Introduction

A myriad of volatile organic compounds (VOCs) released by terrestrial vegetation plays an important role in environmental sciences. A thorough chemical identification of these species at the molecular level is essential in various fields, ranging from atmospheric chemistry to ecology of forest ecosystems. In particular, the recognition of VOCs profiles in a context of plant?Cinsect communication is a key issue for the development of forest protection tools.

Purpose

This work was aimed at the development of a simple, robust and reliable method for the identification of volatiles emitted from plant materials, which can attract or deter pest insects. Specifically, volatiles emitted from the bark of Pinus sylvestris were studied, which might attract the black pine sawyer beetle Monochamus galloprovincialis??a serious pest of the tree and a vector of a parasitic nematode Bursaphelenchus xylophius.

Method

The volatiles from bark samples were collected using a solid-phase micro-extraction technique, and subsequently analysed by gas-chromatography/mass-spectrometry (GC/MS). The characterisation of the volatile fraction was based on the comparison with data in mass spectral libraries, and in most cases, with the available authentic standards. The identified compounds were screened against the available entomological data to select insect attractors.

Results

The identified components included terpenes (??-pinene, ?-3-carene, and para-cymenene), oxygenated terpenes (??-terpineol and verbenone), sesquiterpenes (??-longipinene, longifolene, E-??-farnesene, ??-cadinene and pentadecane), and diterpenes (manoyl oxide and (+)-pimaral). Of these, longifolene and (+)-pimaral are of particular interest as plausible attractors for the M. galloprovincialis beetle that might find application in the construction of insect bait traps.  相似文献   

17.

Background

Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer used in industrial and diverse consumer products. Animal studies indicate DEHP caused developmental, reproductive, and hepatic toxicities. However, human studies of the potential effects of DEHP are limited.

Methods

The exposed site with a history of over 20 years of waste plastic recycling was located in Hunan Province, China. The reference site without known DEHP pollution source was about 50 km far away from the exposed site. In this study, 181 workers working in plastic waste recycling and 160 gender?Cage matched farmers were recruited. DEHP concentrations in water and cultivated soil samples, serum thyroid-stimulating hormone, malondialdehyde (MDA), superoxide dismutase (SOD), urinary 8-hydroxy-2??-deoxyguanosine (8-OHdG), and micronuclei frequency in human capillary blood lymphocytes were analyzed.

Results

Mean levels of DEHP were greater in environment at the recycling site than at reference site (industry wastewater for the exposed: 42.43 ??g/l; well water: 14.20 vs. 0.79 ??g/l, pond water: 135.68 vs. 0.37 ??g/l, cultivated soil: 13.07 vs. 0.81 mg/kg, p?p?p?Conclusions The occupational DEHP exposure might contribute to oxidative deoxyribonucleic acid damage in the male workers.  相似文献   

18.

Background, aim, and scope

Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound.

Materials and methods

2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography–mass spectrometry (GC–MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration.

Results

The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers.

Discussion

We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of reaction times is thereby achieved. The results support the interpretation of previously published data and improve the understanding of the factors of direct degradation along different pathways.

Conclusions

Oxidative pathways for 2,4-D, 2,4-DCP, and phenol were proposed by a careful monitoring of the reactions and detection of intermediates by GC–MS.

Recommendations and perspectives

The understanding of the factors that affect chlorophenols degradation along different pathways may facilitate the optimization of the treatment. Type of energy source (US or MW), power, and frequency to be applied could be designed in function of the operative scenario (amount of pollutant in soil, water, or oils).  相似文献   

19.
A new challenge—development of test systems for the infochemical effect   总被引:1,自引:1,他引:0  

Background, aim, and scope

Many—if not all—organisms depend on so-called infochemicals, chemical substances in their surroundings which inform the receivers about their biotic and abiotic environment and which allow them to react adequately to these signals. Anthropogenic substances can interfere with this complex chemical communication system. This finding is called infochemical effect. So far, it is not known to what extent anthropogenic discharges act as infochemicals and influence life and reproduction of organisms in the environment because adequate testing methods to identify chemicals which show the infochemical effect and to quantify their effects have not been developed yet. The purpose of this article is to help and find suitable test designs.

Main features

Test systems used in basic research to elucidate the olfactory cascade and the communication of environmental organisms by infochemicals are plentiful. Some of them might be the basis for a quantified ecotoxicological analysis of the infochemical effect. In principle, test systems for the infochemical effect could be developed at each step of the chemosensory signal transduction and processing cascade.

Results

Experimental set-ups were compiled systematically under the aspect whether they might be usable for testing the infochemical effect of single chemicals in standardized quantifying laboratory experiments. For an appropriate ecotoxicological assessment of the infochemical effect, experimental studies of many disciplines, such as molecular biology, neurobiology, physiology, chemical ecology, and population dynamics, should be evaluated in detail before a decision can be made which test system, respectively which test battery, might be suited best. The test systems presented here are based on the knowledge of the genetic sequences for olfactory receptors, binding studies of odorants, signal transmission, and reactions of the receivers on the level of the organisms or the populations. The following basic approaches are conceivable to identify the role of an infochemical: binding studies to the odorant-binding protein or to the odorant receptor binding protein (e.g., by in situ hybridization and immunohistochemical studies), measurement of electrical signals of the receptor cells in the tissue (e.g., electroolfactograms, electroantennograms), registration of phenotypic changes (e.g., observation under the microscope), behavioral tests (e.g., in situ online biomonitoring, use of T-shaped olfactometers, tests of avoidance responses), measurement of population changes (e.g., cell density or turbidity measurements), and multispecies tests with observation of community structure and community function. The main focus of this study is on aquatic organisms.

Discussion

It is evident that the infochemical effect is a very complex sublethal endpoint, and it needs further studies with standardized quantitative methods to elucidate whether and to what extent the ecosystem is affected. The collection of approaches presented here is far from being complete but should serve as a point of depart for further experimental research.

Conclusions

This article is the first to compare various approaches for testing the infochemical effect. The development of a suitable test system will not be easy as there are a multitude of relevant chemicals, a multitude of relevant receptors, and a multitude of relevant reactions, and it must be expected that the effective concentrations are very low. The chemical communication is of utmost importance for the ecosystem and justifies great endeavors to find solutions to these technical problems.

Recommendations and perspectives

The infochemical effect is a new chapter in ecotoxicology. Will a new endpoint, the so-called infochemical effect, be required in addition to the actual standard test battery of Annex 5 to Commission Directive 92/69/EEC (EC 1992)? Finding the answer to this question is a big challenge that could be met by a comprehensive research project.  相似文献   

20.

Background

Continuous monitoring of air quality is implemented by government institutions at fixed ambient sites. However, the correlation between fixed site measurements and exposure of individual persons to air contaminants is likely to be weak.

Materials and methods

We measured particulate matter both outdoors and indoors by following the spatial movement of individuals. Sixteen test persons took part and carried a measurement backpack for a 24-h period. The backpack was comprised of a Grimm Aerosol Spectrometer model 1.109, a GPS device, and a video camera for tracking of human behavior. The spectrometer provided information about particle numbers and mass in 32-size classes with a high temporal resolution of 6 s.

Results

The personal exposure of individuals during 24 h could significantly exceed the outdoor particulate matter (PM)10 concentrations measured at the fixed sites. The average 24-h exposure of all test persons for PM10 varied from 27 to 322 ??g m?3. Environmental tobacco smoke and cooking emissions were among the main indoor sources for PM. The amount of particulate matter a test person was exposed to was highly dependent on the spatial behavior and the surrounding microenvironment conditions.

Discussion

Large-scale experiments including personal measurements might help to improve modeling approaches to approximate the actual exposure on a statistically sound basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号