首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
. Despite the increased complexity of experimental and theoretical studies on the biodiversity-ecosystem functioning (B-EF) relationship, a major challenge is to demonstrate whether the observed importance of biodiversity in controlled experimental systems also persists in nature. Due to their structural simplicity and their low levels of human impacts, extreme species-poor ecosystems may provide new insights into B-EF relationships in natural systems. We address this issue using shredder invertebrate communities and organic matter decomposition rates in 24 high-altitude (3200-3900 m) Neotropical streams as a study model. We first assessed the effects of stream characteristics and shredder diversity and abundance on organic matter decomposition rates in coarse- and fine-mesh bags. We found the interaction term shredder richness x shredder abundance had the most significant impact on decomposition rates in the field, although water discharge may also play a role locally. We also examined the relative contribution of the three most abundant shredders on decomposition rates by manipulating shredder richness and community composition in a field experiment. Transgressive overyielding was detected among the three shredder species, indicating complementary resource use and/or facilitation. By integrating survey and experimental data in surface response analyses we found that observed B-EF patterns fit those predicted by a linear model that described litter decomposition rates as a function of increasing shredder richness and the relative abundance of the most efficient shredders. Finally, the validity of our approach was tested in a broader context by using two independent but comparable data sets from 49 French and Swedish streams showing more complex shredder community structure. Results revealed that richness and identity effects on decomposition rates were lost with increasing shredder community complexity. Our approach of combining experimental and empirical data with modeling in species-poor ecosystems may serve as an impetus for new B-EF studies. If theory can explain B-EF in low-diversity ecosystems, it may also have credibility in more complex ones.  相似文献   

2.
Although species commonly modify habitats and thereby influence ecosystem structure and function, the factors governing the ecological importance of these modifications are not well understood. Pacific salmon have repeatedly been shown to positively influence the abundance of benthic biota by annually transferring large quantities of nutrients from marine systems to the nutrient-poor freshwaters in which they spawn. Conversely, other studies have demonstrated that salmon can negatively influence the abundance of freshwater biota, an effect attributed to bioturbation during upstream migration and nest construction. The factors determining which of these contrasting ecological effects predominates are unknown, including how human activities, such as land use, influence ecological responses to salmon. We sampled a key basal food resource, sediment biofilm, in seven southeast Alaskan streams impacted to varying degrees by timber harvest. Biofilm abundance (measured as chlorophyll a and ash-free dry mass) was positively related to timber-harvest intensity prior to salmon arrival. However, during the salmon run, an inverse relationship emerged of more abundant biofilm in less-harvested watersheds. Among-stream variability in biofilm response to salmon was largely explained by sediment particle size, which was larger in less-harvested watersheds. Collectively, these results suggest that, by altering stream sediment size, timber harvest transformed the dominant effect of salmon from nutrient enrichment to physical disturbance, thus modifying nutrient linkages between marine and freshwater ecosystems.  相似文献   

3.
Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios (approximately 25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO3-] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.  相似文献   

4.
Ecosystem models must convert a naturally open system into a theoretically closed one. For phytoplankton-herbivore models the form for the parameterization of predation on the herbivores can have a significant effect on the remainder of the model.  相似文献   

5.
Surface “swarms” of the swimming crabs Charybdis smithii are still considered as an unusual phenomenon in the open Indian Ocean, although their dense pelagic aggregations were already reported in waters off the Indian coast and in the northern Arabian Sea. Based on an extensive large-scale data series taken over 45 years, we demonstrate that C. smithii is common in the pelagic provinces of the western Indian Ocean driven by the wind monsoon regime. Swimming crabs are dispersed by the monsoon currents throughout the equatorial Indian Ocean. They aggregate at night in the upper 150-m layer, where their estimated biomass derived from pelagic trawling data can exceed 130 kg km−2. Abundance of C. smithii can reach >15,000 ind. km−2 in July (i.e. the peak of the south-west monsoon), declines by 50-fold in March and is negligible in May. C. smithii is an important prey for more than 30 species of abundant epipelagic top predators. In turn, it feeds on mesopelagic species. This swimming crab is a major species of the intermediate trophic levels and represents a crucial seasonal trophic link in the open ocean ecosystem of the western Indian Ocean. Outbursts in pelagic waters of huge biomasses of ordinarily benthic crustaceans (C. smithii and Natosquilla investigatoris) are a remarkable feature of the Indian Ocean, although similar, but smaller, events are reported in the Pacific and Atlantic Oceans.
Evgeny RomanovEmail:
  相似文献   

6.
The biodiversity and distributional ecology of amphipod crustaceans were analysed from benthic surveys in 1985 and 1986 along the coast of Portugal, from the Tagus canyon to the coast of Minho, in order to determine their role in the ecosystem of the Portuguese continental self. In samples obtained from different types of substrate between 18 and 545 m, we identified 113 species belonging to 51 genera of 24 families. Seventeen of these species were new records for the Portuguese coast. The relative frequencies and number of individuals of all species were analysed. The genus Ampelisca clearly dominated the group of the most frequent and abundant species, which also exhibited a large range of vertical distribution. Most of the 113 species were found only down to 150 m depth, corresponding roughly to the lower limit of the continental shelf. Fifteen species exhibited clear bathyal traits, being consistently found deeper than 100 m, especially in the Tagus canyon and the upper zone of the continental slope. The most frequent and abundant species were found predominatly or in large numbers in medium to fine sand bottoms. This type of substrate also contained the highest number of species. The granulometric structure of the habitat could constitute the most important factor controlling both biodiversity and development of large amphipod populations, since oxygen level, water exchange, number of available shelters, and probably the quantity and quality of nutritional resources all vary as a function of substrate texture. Because of their dominance in both frequency and abundance, several Ampelisca species may constitute an important food source for many secondary consumers of the shelf sediments, especially for demersal fishes.  相似文献   

7.
In the Elkhorn River, burrows, tubes, and sediment mounds created by invertebrate bioturbation were observed in the exposed streambed and commonly concentrated on the fine-sediment patches, which consist of silt, clay, and organic matter. These invertebrate activities could loosen the thin layer of clogging sediments and result in an increase of pore size in the sediments, leading to greater vertical hydraulic conductivity of the streambed (K v ). The measurements of the vertical hydraulic gradient across the submerged streambed show that vertical flux in the hyporheic zone can alter directions (upward versus downward) for two locations only a few meters apart. In situ permeameter tests show that streambed K v in the upper sediment layer is much higher than that in the lower sediment layer, and the calculated K v in the submerged streambed is consistently greater than that in the clogged sediments around the shorelines of the sand bars. Moreover, a phenomenon of gas bubble release at the water-sediment interface from the subsurface sediments was observed in the groundwater seepage zone where flow velocity is extremely small. The bursting of gas bubbles can potentially break the thin clogging layer of sediments and enhance the vertical hydraulic conductivity of the streambed.  相似文献   

8.
Environmental Chemistry Letters - Silicon (Si) is the most abundant element on the earth’s surface after oxygen. Si  can be found in minerals, electronic chips, cosmetic...  相似文献   

9.
Laboratory experiments were conducted to investigate the survival rate of Monoporeia affinis in sulphide-rich sediment with oxic overlying water, and the effect of amphipod bioturbation on sulphide and oxygen profiles. As long as the oxygen content in the water is high, the amphipods seem to avoid quite high concentrations (>200 μmol l−1) of sulphide in the sediment by creating microhabitats where sulphide is rapidly oxidised. In cores with amphipods, a decrease of sulphide concentration was found in upper layers, while an increase of sulphide was found in deeper layers. Aggregation of amphipods generated pockets of light-brown sediment, characterised by high oxygen concentrations and no sulphide, and their depth was clearly dependent on amphipod density. This indicates that M. affinis has a potential to recolonise sulphide-rich sediments, devoid of macroscopic life, after the overlying water column has become oxygenated. Received: 13 April 2000 / Accepted: 8 September 2000  相似文献   

10.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

11.
Living organisms and ecosystems have been shown to be sensitive to very weak signals originating very far away. The dynamics governing these phenomena is discussed in the framework of Quantum Field Theory. This phenomenon gives an indication on the dynamics responsible for the exchange of information in ecosystems. The peculiar role of coherent water is stressed. It is shown that energy is able to travel in a coherent medium in form of solitons, without any losses.  相似文献   

12.
In a study that spanned from March 2007 through November 2009, we report high fungal biomass and over 90% of extracellular enzymatic activity occurring in the size classes dominated by fungi during periods of high autotrophic biomass in surface waters of the upwelling ecosystem off central-southern Chile (36°30.80′S–73°07.70′W). Fungal biomass in the water column was determined by the abundance of hyphae and was positively correlated with the concentration of the fungal biomarker 18:2ω6. High fungal biomass during active upwelling periods was comparable to that of prokaryotes (bacteria plus archaea) and was associated with an increase in phytoplankton biomass and in extracellular enzymatic hydrolysis in waters from the depth of maximum fluorescence. We show fungi as a new microbial component in the coastal upwelling ecosystem of the Humboldt Current System off central Chile. Our results suggest that the temporal pattern in fungal biomass in the water column during a year cycle is a reflection of their capacity to hydrolyze organic polymers and, in consequence, fungal biomass and activity respond to a seasonal cycle of upwelling in this ecosystem.  相似文献   

13.
Pacific salmon transfer large quantities of marine-derived nutrients to adjacent forest ecosystems with profound effects on plant and wildlife production. We investigated this process for two highly modified California wine country rivers, one with consistent salmon runs (Mokelumne River) and one without (Calaveras River). Mokelumne River Chinook salmon transported biomass and N comparable to Pacific Northwest salmon streams. Calaveras River levels were much less. Scavenger numbers correlated with salmon carcass counts over time on the Mokelumne River but not the Calaveras River. Likewise, salmon carcasses were consumed significantly faster on the Mokelumne River. Native riparian vegetation as well as cultivated wine grapes adjacent to Mokelumne River spawning sites received 18-25% of foliar N from marine sources, significantly higher than vegetation along the Calaveras River. These data suggest that robust salmon runs continue to provide important ecological services with high economic value, even in impaired watersheds. Loss of Pacific salmon can not only negatively affect stream and riparian ecosystem function, but can also affect local economies where agriculture and salmon streams coexist.  相似文献   

14.
Historically, management strategies in Canada's boreal forest have focused on forest polygons and terrestrial biodiversity to address ecological considerations in forest management. The Forest Watershed and Riparian Disturbance (FORWARD) project examines the problem from a watershed perspective rather than a forest polygon viewpoint. The main objective of this study was to devise an artificial neural network (ANN) modeling tool that can predict flow and total phosphorus (TP) concentration for ungauged watersheds (where daily flow is not monitored). This dictates that all inputs should be easily accessed via a public domain database, like the Environment Canada weather database, without the need to install flow gauges in each modeled watershed. Daily flow and TP concentration for two of the project watersheds were modeled using ANNs. The two watersheds (1A Creek, 5.1 km2 and Willow Creek, 15.6 km2) were chosen to reflect variations in wetland area and composition in the study area. Flow was modeled with a feed-forward multilayer perceptron ANN trained with the error back-propagation algorithm. Simulated values for flow were then used, as inputs, to model TP concentration using the same neural networks algorithm. One hidden layer with three slabs; each operating with a different activation function was utilized to simulate the conceptual differences between base flow, snowmelt, and storm events. Time domain analysis was conducted to identify possible model time-lagged inputs reflecting the time dependency of the modeled variables. Spectral analysis was used to address data hystereses. Our results highlight the capabilities of ANN in modeling complex ecosystems and highly correlated variables. Results also indicated that more research towards the phosphorus dynamics in wetlands is required to better represent the impact of wetland area and composition on the water-phase phosphorus in ANN modeling.  相似文献   

15.
Observed emergence of IPNV in farmed Irish salmon is simulated using a model originally developed to analyse the spread of the virus in Scotland [Murray, A.G., 2006a. A model of the spread of infectious pancreatic necrosis virus in Scottish salmon farms 1996–2003. Ecol. Model. 199, 64–72]. IPNV appears to have become established relatively recently in Ireland and the model is altered to explicitly simulate the origin of the spread of the virus. Input to freshwater farms was key to initiation of infection, but modelling suggests that endogenous spread was responsible for much of the subsequent increase in prevalence of IPNV. From the modelling, it is unlikely that direct imports accounted for most IPNV cases. If this is the case, cessation of imports, without a substantial improvement in biosecurity, would be likely to be of only limited effect in controlling IPNV. Marine IPNV prevalence appears to be insensitive to direct interventions in the marine environment (as in the Scottish model). A multi-element control strategy, targeting both endogenous spread and external input of infection and prioritising freshwater sites, but extending to marine sites, would probably now be required to eradicate IPNV from Ireland.  相似文献   

16.
We studied the interacting roles of nutrient availability and herbivory in determining the macroalgal community in a rocky littoral environment. We conducted a factorial field experiment where we manipulated nutrient levels and herbivory at two sublittoral depths and measured macroalgal colonization and the following young assemblage during the growing season. At the community level, grazing reduced algal colonization, though the effect varied with depth and its interaction with nutrient availability varied in time. In shallow water, the total density of macroalgae increased in response to nutrient enrichment, but the ability of grazers to reduce macroalgal density also increased with the nutrient enrichment, and thus, the community could not escape from the top-down control. In deep water, the algal density was lower, except in July when nutrient enrichment caused a very dense algal growth. Grazing at the greater depth, though effective, was generally of smaller magnitude, and in July it could not limit algal recruitment and growth. Species richness peaked at the intermediate nutrient level in deep but not in shallow water during most of the growing season. Grazing had no effect on diversity of the algal community at either depth and only a minor effect on species richness at the greater depth. Opportunistic and ephemeral algae benefited from the nutrient enrichment but were also grazed to very low densities. Slowly growing and/or perennial species colonized poorly in the nutrient enriched treatments, and depending on the species, either suffered or indirectly benefited from herbivory. For all species, effects of nutrients on colonization depended on depth; usually both nutrient and herbivory effects were more pronounced at the shallow depth. We conclude that grazers are able to reduce macroalgae over a large range of nutrient availabilities, up to 12-fold nutrient enrichment in the current experiment, and that the sublittoral depth gradient generates variation in the algal community control exerted by both herbivory and nutrient availability. Thus temporal and spatial variability in both top-down and bottom-up control and in their interaction, especially along the depth gradient, may be crucially important for producer diversity and for the successional dynamic in a rocky sublittoral environment.  相似文献   

17.
Many small watersheds and streams in the Brazilian Amazon have been impacted by agriculture and urban development, often due to household economic needs and migration processes. This study examined the relationships between land use, soil type, and household factors on stream water chemistry in and near the city of Altamira, Pará, Brazil, in 2008–2009. While soil weathering and stream discharge may have affected several stream water ion concentrations, agriculture and especially urban development were associated with high dissolved nitrogen concentrations, high water temperatures, and low dissolved oxygen concentrations in streams. Younger interviewed households were generally associated with these watersheds, and many urban residents reported disposing of household waste directly into streams. In contrast, older households were generally associated with forest and cocoa agriculture, along with lower water temperatures and higher dissolved oxygen concentrations in streams. These conditions persisted despite reported uses of herbicides and fertilizers by some residents.  相似文献   

18.
This study examines the value of fallow ecosystem services in shifting cultivation, including hydrological externalities that may affect other farms. Using farm-level survey data from the Brazilian Amazon, I estimate a production function to assess the value of forest fallow and test whether it provides local externalities to agricultural production. Soil quality controls, instrumental variables, and spatial econometric approaches help address endogeneity issues. I use GIS data on external forest cover at the farm level and model the hydrological externality as an upstream-to-downstream process. The estimated parameters indicate that fallow contributes significantly to productivity both on farm and downstream. In addition, most farms allocate sufficient land to fallow, accounting for both the value of hydrological spillovers and the opportunity cost of land left out of cultivation. These results suggest that farming communities may have some self-interest in preserving forest cover locally—a finding that may bolster policy efforts aimed at conserving tropical forests for their global public goods.  相似文献   

19.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   

20.
In this work we studied the trophic ecology and feeding impact of the cladoceran Penilia avirostris and the cyclopoid copepod Oithona nana, the two dominant zooplankters in the summer communities of the coastal NW Mediterranean, on the naturally occurring microbial communities. In order to ascertain carbon surplus for growth and reproduction and the contribution to carbon and nitrogen recycling of these two species, we also determined their basal metabolism and excretion rates. The experiments conducted during summers 2002, 2003, and 2004 indicate that P. avirostris grazed mostly upon small flagellates, dinoflagellates, and diatoms, whereas O. nana had a narrower prey range, selecting motile organisms such as ciliates and occasionally dinoflagellates. The grazing impact of both species accounted, on average, for <10% of the standing stock of the microbial groups considered. In spite of the oligotrophic conditions, the feeding activity of P. avirostris is in general sufficient to compensate basal metabolism and allows a surplus for growth and reproduction. This was not the case for O. nana, its daily rations being often lower than the carbon basal demands. Regarding excretion rates, both species presented different N:P excretion ratios, the ones of O. nana falling within values typical for copepods, whereas the absence of detectable phosphorus excretion by P. avirostris implied an unbalance recycling with respect to typical Redfield ratio composition of marine seston.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号