首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
同步硝化反硝化生物脱氮技术研究   总被引:5,自引:0,他引:5  
讨论了影响同步硝化反硝化反应的各参数,并进行了单因素实验与正交实验,获得了同步硝化反硝化生物脱氮工艺运行的最佳条件:DO浓度控制在0.5~2mg/L,COD浓度为600~800mg/L,混合液悬浮固体(MLSS)为5000mg/L,pH值在8.0左右,反应时间为6h。在此条件下,氨氮及COD的去除率都较高,分别达85%和95%,总氮去除率为68.5%。  相似文献   

2.
戴鹏  张勇 《环境工程学报》2008,2(4):507-510
研究了压力式接触氧化法的脱氮性能,分析了容积负荷、溶解氧和停留时间等因素对反应器脱氮效果的影响.研究表明,压力式接触氧化法具有明显的同步硝化反硝化现象,当HRT=1.8 h时,DO高达5.4 mg/L,可获得90%以上的反硝化率.当HRT=1.8 h,溶解氧4~5 mg/L,容积负荷为10~12 kg COD/(m3·d)时,氨氮去除率80%左右,总氮去除率达70%~80%.  相似文献   

3.
短程硝化-反硝化生物脱氮过程的影响因素研究   总被引:2,自引:0,他引:2  
王敏  汪建根 《污染防治技术》2009,22(4):59-62,108
短程硝化-反硝化,是将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程,其关键是如何控制硝化过程中影响HNO2积累的因素。分析结果表明:影响NO2^--N积累的主要因素为温度、游离氨、pH值、溶解氧、有害物质和泥龄,并提出了实现短程硝化一反硝化的控制条件。  相似文献   

4.
微孔曝气变速氧化沟是一种新型的氧化沟。本研究通过批式实验,测定同步硝化反硝化(SND)溶解氧抑制系数KO,依此计算不同DO浓度下的SND比率,并与实际运行状况进行对比。结果表明:活性污泥的KO为0.7801 mg/L;当DO浓度分别为1.2、1.0和0.8 mg/L时,理论的SND比率分别为45.11%、47.57%和50.88%,而相同条件下氧化沟中实际SND比率分别为47.38%、52.75%和60.31%;同步硝化反硝化在微孔变速氧化沟中是一种重要的脱氮路径。  相似文献   

5.
SBR法短程硝化-反硝化生物脱氮工艺的研究   总被引:4,自引:1,他引:4  
针对目前传统生物脱氮工艺存在的问题 ,结合国内外在该方向的研究现状 ,以实际豆制品废水为研究对象 ,控制反应器内混合液温度在 31± 0 .5℃的条件下 ,实现了短程硝化 反硝化生物脱氮工艺 ,NO-2 N NOx N的比率始终维持在90 %以上。并在此试验基础上 ,考察了曝气时间对反应器内氮形态变化的影响及系统对进水COD和NH3 N浓度的抗冲击负荷能力。结果显示 ,曝气时间对硝化效果影响较大 ,同时 ,本工艺具有较强的抗冲击负荷能力。  相似文献   

6.
高浓度氨氮废水同步硝化反硝化性能研究   总被引:8,自引:0,他引:8  
利用序批式反应器研究了溶解氧浓度和进水碳氮比对高浓度氨氮废水脱氮性能的影响.结果表明,溶解氧浓度降低实现了短程同步硝化反硝化,并提高了反应器脱氮效率.反应器运行经历了外部碳源的摄取、PHB储存、PHB有氧氧化和同步硝化反硝化作用,PHB作为同步硝化反硝化过程中反硝化的电子供体.  相似文献   

7.
溶解氧和有机碳源对同步硝化反硝化的影响   总被引:9,自引:5,他引:9  
利用SBR反应器,探讨了溶解氧(DO)和有机碳源(COD)对同步硝化好氧反硝化的影响.结果表明,DO范围在0.5~0.6 mg/L时最适合于同步硝化好氧反硝化脱氮.在同步硝化反硝化过程中出现了亚硝酸盐氮的积累,推断经由短程硝化反硝化途径.总氮的去除率随着COD/N(碳氮比)的增加而增加,当COD/N为10.05时,总氮去除率最高可达70.39%.继续增加碳氮比时,总氮去除率增加不多,并且还会导致硝化作用不完全.当存在足够的易降解有机碳源时,能发生完全的好氧反硝化作用.  相似文献   

8.
SBR法短程硝化-反硝化生物脱氮工艺的研究   总被引:14,自引:0,他引:14  
  相似文献   

9.
采用反硝化生物滤池处理城市污水厂二级出水,研究了反硝化生物滤池脱氮效能及其影响因素,构建了反硝化生物滤池脱氮动力学模型。结果表明,反硝化生物滤池启动7d后出水水质稳定,对NO3--N的去除率达到90%以上,NO2--N积累现象消失;当外加乙酸钠作碳源并使C/N ≥ 4.7时,对NO3--N的去除率达到90%以上,出水NO3--N浓度在1.0 mg/L以下;反硝化生物滤池具有较高的处理负荷,当HRT ≥ 5 min时,对NO3--N的去除率能达到90%以上;在实验水质条件下,滤池反硝化反应遵循一级反应动力学,且反应速率常数与流速成正比。  相似文献   

10.
采用分子生物学手段PCR-DGGE技术对亚硝化-电化学生物反硝化全自养脱氮工艺细菌的多样性进行了研究。结果表明,亚硝化段内主要的细菌种群为相似于Nitrosomonas sp.(AJ224410)和Nitrosomonas sp.NM41(AF272421)的种群,相似性分别为97%和94%;电化学生物反硝化段细菌类群主要有β-proteobacteria类群、γ-proteobacteria类群和Chlo-roflexi类群。填料上生物膜细菌种群较底部泥水混合物丰富,两者细菌种群相似性为75%;底部泥水混合物样中存在与厌氧氨氧化菌Brocadia anammoxidans(AF375994)相似性为93%的菌种,而填料上生物膜中存在与Thioalkalivibrio sp.K90mix(EU709865)和Thiobacillus thioparus(AJ243144)相似性分别为94%、97%的菌种,其中Thiobacillus thioparus(AJ243144)是典型的硫自养反硝化菌,表明填料上生物膜中有大量的硫自养反硝化菌。  相似文献   

11.
低氧条件下同时硝化和反硝化机理初探   总被引:6,自引:1,他引:6  
采用人工配水 ,对低氧条件下完全混合系统中氮的去除进行了研究。实验结果表明 ,在低氧条件下 (DO为 0 .3~0 .8mg/L )完全混合系统的同时硝化和反硝化具有一定的可行性。在泥龄为 45 d,C/N比为 10∶ 1,F/M为 0 .1g CODCr/(g ML SS·d)条件下 ,总氮的去除率达 66.7%。经分析 ,本实验发生的硝化反应仍然是自养硝化菌的好氧硝化 ,同时硝化和反硝化现象应归因于微环境理论  相似文献   

12.
将上流式颗粒污泥床(USB)用于反硝化和生物膜法用于自养硝化处理蔗糖配水和小区生活污水,反硝化污泥床去除有机物和硝态氮具有节省需好氧去除有机物的能耗的优势,同时好氧生物膜法硝化效率高。试验结果表明,当工艺进水的有机负荷小于2kgCOD/m3·d时,出水COD均小于60mg/L,好氧单元进水有机负荷和氨氮负荷分别小于13kgCOD/m3·d和09kgNH3N/m3·d时,出水氨氮小于5mg/L;COD/NO-3N是影响反硝化的关键因素,处理蔗糖配水时,COD/NO-3N大于5时反硝化脱氮完全,而COD/NO-3N为10时,生活污水作为电子供体仍然脱氮不完全;有机物含量过高导致好氧单元硝化效果降低,HRT是影响好氧单元硝化效率的主要因素,HRT缩短为15h时,氨氮去除率降低了85%左右;同时处理蔗糖配水和生活污水的反硝化菌活性相当。  相似文献   

13.
碱度指示MBR中同步硝化反硝化的研究   总被引:5,自引:0,他引:5  
在连续的操作环境下,通过改变在膜生物反应器(MBR)中的C/N和曝气量,研究碱度对同步硝化反硝化脱氮效果的指示作用。结果发现,在反硝化完全的情况下,出水碱度(330~440 mg/L)在硝化过程中较高并与出水TN表现出好的线性关系(Alk=3.22[N]+333.08,R2=0.85);在硝化完全的情况下,出水碱度(60~280 mg/L)在反硝化过程中较低并与出水TN也有很好的线性关系(Alk=-4.93[N]+317.86,R2=0.89)。实际消耗的碱度可以作为另一个指示因子(ΔAlkexper),实际消耗的碱度随出水的NH4+-N浓度升高而降低(ΔAlkexper=-3.85[N]+149.11,R2=0.88,出水NO3--N4.5 mg/L);实际消耗的碱度随出水的NO3--N浓度升高而升高(ΔAlkexper=3.68[N]+161.11,R2=0.88,出水NH4+-N5.5 mg/L)。虽然pH的变化有一定的规律,但是对SND脱氮效果指示不灵敏。  相似文献   

14.
在连续低曝气的SBR装置中,采用人工模拟养殖废水培养成熟脱氮除磷污泥,研究了养殖固体废弃物发酵产物为碳源的养殖废水脱氮除磷效果。结果表明:在水力停留时间(HRT)为12 h,溶氧在0.04~1.5 mg/L之间,污泥经过25 d的驯化培养,反应器中形成了具有较高活性的同步硝化反硝化能力的污泥,以养殖固体废弃物发酵产物为碳源处理养殖废水,反应器中的COD、NO3--N和NH4+-N最大去除率分别能达到97.87%、94.95%和88.90%,且NO2--N完全不发生累积,其中C/N=7.35,即50 g湿重的养殖固体废弃物与2 L的养殖废水配比最佳,脱氮除磷效果最好,对TN的去除率在87%左右,能够较好完成同步脱氮除磷实现养殖固体废弃物的资源化利用,为循环水养殖系统零排放提供技术参考。  相似文献   

15.
采用SBR反应器,在25℃下,以不同比例的NO-3N和NO-2N作电子受体,对内源反硝化脱氮过程中的pH、ORP变化进行了研究。结果表明,ORP在内源反硝化过程中呈现逐渐减小的趋势,当反硝化结束时突然大幅度降低而出现特征点;内源反硝化过程中的pH值变化则与起始pH值和硝态氮浓度有关,当初始pH值较小、硝态氮浓度较低时,内源反硝化过程中pH极大值只出现一次,pH值呈现出先增大后减小的规律性变化,指示反硝化结束的特征点准确出现;当初始pH值较高、或者硝态氮浓度足够高时,则pH值在反应后期将维持在某个值附近并波动,指示反硝化结束的特征点不明显,此种情况下,以ORP来指示内源反硝化过程的结束较为可靠。  相似文献   

16.
DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响   总被引:8,自引:2,他引:6  
以模拟城市污水为处理对象,研究了不同溶解氧下序批式活性污泥反应器(SBR)的短程同步硝化反硝化过程特征及处理效果。试验结果表明,溶解氧浓度是实现短程同步硝化反硝化的一个重要控制参数。在亚氮积累阶段,控制温度为28~32℃,pH值为7.5~7.8,当进水NH+4-N为30 mg/L左右,COD为250 mg/L左右时,亚硝酸盐氮的积累率达到96%~98%。在试验阶段,常温下控制溶解氧在0.5~1.0 mg/L,可保证氨氮的去除率达到95%~97%,总氮的去除率达到82%~85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号