首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
China is committed to peaking its carbon emissions by 2030 and become a carbon-neutral society by 2060. The building sector that accounts for over one-third of the total carbon emissions is expected to face a great challenge in helping China achieve this goal. Shenzhen, as a low-carbon pilot city, whether its low-carbon work of urban buildings reaches the target is crucial. An attempt has been made in this study to assess the intensity of carbon emissions and associated reduction efficiency of urban buildings (operation stage) in Shenzhen by using the life cycle assessment method. The results show that the total carbon emissions generated from the buildings' operation stage have increased from 22 million metric tons (Mt) CO2eq in 2005 to 42 (±13%) Mt. CO2eq in 2019. Carbon emissions mainly result from the buildings' electricity use (79%), followed by refrigerant release emissions (12%). The energy conservation and carbon emissions reduction intensity in Shenzhen is at the middle level in China, and there is considerable space for improvement. According to scenario-based analysis, the carbon emission of the buildings sector can probably reach its peak by 2025 with the implementation of suitable policies – 5 years earlier than national target by 2030. Overall, this study makes a systemic analysis of the characteristics of urban buildings energy consumption and carbon emissions reduction, which can provide supportings for justifying the effectiveness of low-carbon activities in Shenzhen and beyond.  相似文献   

2.
通过分析新疆准东经济技术开发区各行业的二氧化碳排放量及排放特征,研究新疆准东经济技术开发区碳达峰碳中和的实现路径。分析结果显示,准东经济技术开发区最主要的二氧化碳排放源是化石燃料燃烧,其对二氧化碳排放量的贡献比例在95.2%以上。能源活动二氧化碳排放量占总排放量的98.5%以上;工业生产过程排放的二氧化碳较少,占比在1.5%以下。新疆准东经济技术开发区主要二氧化碳排放行业是煤电、电解铝、煤化工、硅基新材料。在此基础上,结合各行业特点,提出发展园区循环经济、制定低碳行业标准和培育低碳产业等详细对策。  相似文献   

3.
A global consensus on carbon emission reductions has been reached for combating climate change. The Chinese government has clearly stated that it is necessary to make full use of market means to improve the level of environmental governance. Emissions trading scheme (ETS) is a typical market means to accelerate low-carbon economic transition. Low-carbon technological innovation is one of the key factors affecting carbon emissions. However, literature on the relationship between ETS and low-carbon technological innovation is relatively scarce at present. This study assesses the effect of pilot ETSs on low-carbon technological innovation, and a difference in differences (DID) model is adopted to analyze China's provincial panel data from 2003 to 2017. The results indicate that China's pilot ETSs can significantly promote low-carbon technological innovation, and changing the window period, PSM-DID and placebo test all verify the robustness of this finding. The dynamic effect test reveals that China's pilot ETSs will gradually increase the effect on low-carbon technological innovation over time. The heterogeneity analysis shows that the effect of China's pilot ETSs on low-carbon technological innovation is more obvious in Guangdong, Hubei, Tianjin and Chongqing. The mechanism analysis suggests that marketization degree and green consumption concept can positively moderate the impact of China's pilot ETSs on low-carbon technological innovation, and industrial structure upgrading plays a positive mediating role between China's pilot ETSs and low-carbon technological innovation. This study is conducive to assessing the policy effectiveness of China's pilot ETSs and provides an empirical evidence for promoting the development of the carbon emissions trading market.  相似文献   

4.
Globally, the transportation industry is one of the leading fields that generate the largest share of greenhouse gas emissions. While undergoing rapid development, countries worldwide aim to solve the problems involved in high energy consumption. Taking China as an example, this paper studies the main factors of carbon emissions in the transport sector and analyses the decoupling states between carbon emission and economic growth, making energy efficiency policies accordingly. In order to better demonstrate the dependence of the economy on the carbon emissions in China's transportation industry comprehensively, combined with the CD production function, this paper develops the decomposition and decoupling technology based on the LMDI approach. Additionally, it quantifies seven effects: energy emission intensity effect, energy structure effect, energy intensity effect, transportation intensity effect, technology state effect, labor input effect and capital input effect. The results show three major points: (1) From 2001 to 2018, the cumulative carbon emissions of China's transportation industry increased by 633.46 million tons, in which the capital input effect is the key factor driving carbon emissions, accounting for 157.70% of the total cumulative increased emissions, followed by energy structure effect at 10.39%. The labor input effect accounted for the smallest proportion at 2.26%. In this case, the technology state effect is the primary factor in restraining carbon emissions. During the study period, it reduced carbon emissions by 292.27 million tons, accounting for 46.14%. To a certain extent, energy intensity effect, transportation intensity effect and energy emission intensity inhibited carbon emissions, representing 16.67%, 5.32% and 2.22%, respectively. (2) During the research period, two decoupling states existed between carbon emissions and economic growth in China's transportation industry, specifically weak decoupling and expansive coupling. (3) The analysis of decomposition and decoupling state of influencing factors of carbon emissions shows that, on the one hand, factors promoting carbon emissions (capital input effect, energy structure effect and labor input effect) hinder the decoupling process. On the other hand, factors restraining carbon emissions (technology state effect, transportation intensity effect, energy intensity effect and energy emission intensity effect) accelerate the decoupling process. The research findings provide a new perspective for achieving carbon emission reduction in the transportation industry and curbing energy consumption growth.  相似文献   

5.
Accurate emission inventory (EI) is the foremost requirement for air quality management. Specifically, air quality modeling requires EI with adequate spatial and temporal distributions. The development of such EI is always challenging, especially for sporadic emission sources such as biomass open burning. The country of Thailand produces a large amount of various crops annually, of which rough (unmilled) rice alone accounted for over 30 million tonnes in 2007. The crop residues are normally burned in the field that generates large emissions of air pollutants and climate forcers. We present here an attempt at a multipollutant EI for crop residue field burning in Thailand. Available country-specific and regional primary data were thoroughly scrutinized to select the most realistic values for the best, low and high emission estimates. In the base year of 2007, the best emission estimates in Gigagrams were as follows: particulate matter as PM2.5, 128; particulate matter as PM10, 143; sulfur dioxide (SO2), 4; carbon dioxide (CO2), 21,400; carbon monoxide (CO), 1,453; oxides of nitrogen (NOx), 42; ammonia (NH3), 59; methane (CH4), 132; non-methane volatile organic compounds (NMVOC), 108; elemental carbon (EC), 10; and organic carbon (OC), 54. Rice straw burning was by far the largest contributor to the total emissions, especially during the dry season and in the central part of the country. Only a limited number of EIs for crop residue open burning were reported for Thailand but with significant discrepancies. Our best estimates were comparable but generally higher than other studies. Analysis for emission uncertainty, taking into account possible variations in activity data and emission factors, shows considerable gaps between low and high estimates. The difference between the low and high EI estimates for particulate matter and for particulate EC and OC varied between −80% and +80% while those for CO2 and CO varied between −60% and +230%. Further, the crop production data of Thailand were used as a proxy to disaggregate the emissions to obtain spatial (76 provinces) and temporal (monthly) distribution. The provincial emissions were also disaggregated on a 0.1° × 0.1° grid net and to hourly profiles that can be directly used for dispersion modeling.  相似文献   

6.
China is undertaking a huge number of building and infrastructure projects. As a large consumer of energy-intensive building material, the construction activities provoke large direct carbon emissions in upstream industrial sectors (i.e. embodied carbon emissions). This paper aims to explore how construction-related climate policies could contribute to future national carbon emission mitigation efforts by employing a demand-side input-output model and scenario analysis. First, a hypothetical extraction approach is used to estimate the overall carbon emissions induced by the construction sector in the base year. Then scenario analysis is conducted to quantify the sector's technical potential for carbon mitigation in 2030 and 2050. We find that implementing construction-related climate measures in China could mitigate 2.5 Gt construction-induced CO2 in 2030, and 6.4 Gt in 2050 — more than Europe's annual total carbon emissions in 2015. More efficient electricity use could make a substantial contribution in the short-term. However, material-related initiatives, especially those focused on metal recycling, could yield significant carbon mitigation from 2030 onwards. Our findings suggest China to optimize the relationship between urbanization and construction to comply with the country's climate commitments better. Mechanisms to reform supply-side incentives, such as mandatory carbon labelling for construction material throughout the supply chain, could offer immediate benefits.  相似文献   

7.
基于绿色建筑评价指标体系,采用eFootprint软件对天津市中新生态城低碳体验中心全生命周期碳排放量和运营阶段采用的主要绿色技术减碳潜力进行计算与分析,结果表明:该建筑运营阶段碳排放量占比最大,为89.74%,其次是物化阶段,为10.08%,废弃阶段仅占比0.18%.同时,太阳能热水技术措施的利用对建筑的减碳效果最好...  相似文献   

8.
Transportation systems are vital links for intercountry. However, the transportation industry is associated with high energy consumption and carbon emissions. In this paper, the transportation carbon efficiency (TCE) across the Belt and Road Initiative (BRI) countries during 2005–2017 is estimated by modifying a three-stage epsilon-based measurement model, and the carbon emission reduction potential (CERP) is identified. Based on the results, countries are classified into four categories by comparing a country's TCE and CERP with the average of all BRI countries. The results show that the average TCE of BRI countries is only 0.341, while their average CERP is 0.750, which is tremendous. It also shows that the higher the income levels, the more prone countries are to have a higher TCE. By considering the differences among the countries' environmental factors, TCEs, and the current state or trends of the CERPs, customized low-carbon policies are proposed to increase the TCE and reduce emissions.  相似文献   

9.
In this paper, we use a stochastic integrated assessment model to evaluate the effects of uncertainty about future carbon taxes and the costs of low-carbon power technologies. We assess the implications of such ambiguity on the mitigation portfolio under a variety of assumptions and evaluate the role of emission performance standards and renewable portfolios in accompanying a market-based climate policy. Results suggest that climate policy and technology uncertainties are important with varying effects on all abatement options. The effect varies with the technology, the type of uncertainty, and the level of risk. We show that carbon price uncertainty does not substantially change the level of abatement, but it does have an influence on the mitigation portfolio, reducing in particular energy R&D investments in advanced technologies. When investment costs are uncertain, investments are discouraged, especially during the early stages, but the effect is mitigated for the technologies with technological learning prospects. Overall, these insights support some level of regulation to encourage investments in coal equipped with carbon capture and storage and clean energy R&D.  相似文献   

10.
Despite dramatic reductions in the 1990s of N and P emissions in the drainage basin, Lake Peipsi/Chudskoe (Estonia/Russia) is still suffering from algal blooms, probably caused by low N:P ratios of the lake water. To quantify the sources and changes of N and P inputs to the lake as a result of economic changes, we modelled emissions, transfer and in-stream retention using a GIS model. The model was calibrated using river monitoring data from the 1985–1989 period, and used to simulate emissions and loads for five future scenarios for 2015–2019. During the 1985–1999 period, diffuse P emissions decreased relatively more than N diffuse emissions, but this was not reflected in the loads to the lake. P loads decreased relatively less than N loads, which caused a decrease in the N:P ratio of the rivers. About 30–45% of diffuse N emissions and only 3–10% of diffuse P emissions reaches the river network. In-stream retention reduces N and P loads to the lake by about 62% and 72%, respectively. Point sources contribute negligibly to the N load to the lake, but form about one-third of the P load. A target/fast development scenario is the most likely scenario for the 2015–2019 period, resulting in higher nutrient loads than in recent years. We conclude that effective load reductions can be achieved by focussing on diffuse N and P emissions close ( < 50 km2) to the lake and by upgrading P removal capacity in wastewater treatment plants of towns.  相似文献   

11.
An aggregate integrated assessment model is used to investigate the relative merits of hedging over the near term against the chance that atmospheric concentrations of carbon dioxide will be limited as a matter of global policy. Hedging strategies are evaluated given near term uncertainty about the targeted level of limited concentrationsand the trajectory of future carbon emissions. All uncertainty is resolved in the year 2020, and strategies that minimize the expected discounted value of the long term cost of abatement, including the extra cost of adjusting downstream to meet unexpected concentration limits along unanticipated emission trajectories, are identified. Even with uncertainties that span current wisdom on emission futures and restriction thresholds that run from 550 ppm through 850 ppm, the results offer support for at most modest abatement response over the next several decades to the threat of global change.  相似文献   

12.
The building sector accounts for the largest proportion of global carbon emissions. The implementation of a market-based emission trading scheme offers a wider range of strategic choices and greater flexibility for building owners to reduce carbon emissions, but few of them are enthusiastic and actively engaged. To address the problem, this study explores how governments can effectively guide the carbon mitigation actions of building owners under an emission trading scheme (ETS) by continually adjusting and optimizing their regulation strategies. First, an extended evolutionary game model is built, considering the synergistic effect of multiple regulation policies, to theoretically depict the long-term interactive, extensive correlative, and dynamic feedback relationship between the government and building owners. Second, taking advantage of system dynamics as a policy laboratory, a scenario cultivation and simulation analysis is conducted to fully investigate the implementation effects of different regulation strategies based on the behavioral responses of building owners under different scenarios. The city of Shenzhen is a pioneer in covering the building sector in its carbon trading scheme in China, and its hotels above four stars are selected as the realistic setting for the simulation analysis. The results demonstrate that under the emission trading scheme, compared with increasing levels of carbon monitoring and non-financial incentives for building owners, intervention measures, including penalties, subsidies, and public scrutiny, are more efficient and important for the government. These findings provide important theoretical guidance and practical implications for the government to further adjust and optimize its carbon regulation strategies for the building sector.  相似文献   

13.
Carbon emission reduction in the Chinese cities can make significant contributions to the mission of global emission reduction. Therefore, the promotion of low-carbon cities (LCC) in China is of great importance to achieve this mission. This paper examines the performance of practicing LCC in China by conducting a temporal-spatial evolution analysis on LCC performance. By combining the entropy weight method and the linear weighted sum method, the LCC performance score is calculated to help establish performance grades. The quartile method and the Boston matrix method are used to conduct temporal analysis and spatial analysis respectively. The data employed in this study were collected from 34 cities in China for the period from 2006 to 2018. The findings are as follows: (1) The overall LCC performance in China has been improved in recent years and the implementation of the low carbon pilot project (LCPP) has made contributions to this improvement. (2) The LCC performance of those cities in Southern China is generally better than that in Northern cities. (3) Good LCC performance cities are those economically developed cities, in which the industrial structure is dominated by low carbon industries. This study provides a holistic picture of the LCC practice in China and also provides supportive references for policymakers to make tailor-made measures to improve the LCC performance internationally.  相似文献   

14.
The environmental impact assessment of a process over its entire operational lifespan is an important issue. Estimation of life cycle emission helps in predicting the contribution of a given process to abate (or to pollute) the environmental emission scenario. Considering diminishing and time-dependent effect of emission, assessment of the overall effect of emissions is very complex. The paper presents a generalized methodology for arriving at a single emission discounting number for a process option, using the concept of time value of carbon emission flow. This number incorporates the effect of the emission resulting from the process over the entire operational lifespan. The advantage of this method is its quantitative aspect as well as its flexible nature. It can be applied to any process. The method is demonstrated with the help of an Intermediate Pyrolysis process when used to generate off-grid electricity and opting biochar route for disposing straw residue. The scenarios of very high net emission to very high net carbon sequestration is generated using process by careful selection of process parameters for different scenarios. For these different scenarios, the process discounting rate was determined and its outcome is discussed. The paper also proposes a process specific eco-label that mentions the discounting rates.  相似文献   

15.
碳减排是当前国际政治、经济和环境保护战略斗争的新领域。昌吉州的碳减排工作在新疆具有一定的示范意义,昌吉州目前所排放的二氧化碳主要来自于燃煤、建筑取暖、农业生产及居民生活等方面。现阶段可通过发展循环经济、走可持续发展道路,加强节能减排和植树造林,提倡节约、减少浪费,发展绿色生态农业,积极开发清洁能源,发展新能源等方式来发展低碳经济,降低昌吉州的二氧化碳排放量,为国家减少碳排放的战略目标做出自己的贡献。  相似文献   

16.
2011—2021年,熟料产量呈波动上升趋势。水泥行业整体生产运行水平不断提高,熟料单条生产线平均规模由43.8万t/条提升至115.3万t/条,熟料单位产品综合能耗下降14.4%,熟料单位产品CO2排放强度下降6.3%,但CO2排放总量增加了13.8%,与氮氧化物减排趋势形成较大反差,碳污治理水平差距明显。熟料生产中石灰石分解和煤炭燃烧过程的CO2排放合计占比为92.9%~93.8%,是CO2排放的主要来源。由于熟料系数偏高、非碳酸盐原料替代不足、综合能耗仍然较高等原因,安徽等7个熟料产量大的省份的CO2排放强度高于全国。建议实行碳酸盐熟料产量总量控制,逐步降低熟料应用比例,加快建材市场熟料产品和非碳酸盐原料替代,降低高标号水泥使用比例。应大力推广水泥行业节能降耗增效技术,加快熟料落后产能淘汰。对熟料产量大、碳排放强度高的地区,应结合当地碳排放特点,实行差别化降碳策略。各大气污染防治重点区域应因地施策推进水泥行业减污降碳工作。  相似文献   

17.
建立温室气体监测量值传递与质量控制体系,对于保障温室气体监测数据的准确性、可比性和计量溯源性具有重要意义。世界气象组织于1989年组建了全球大气观测网络,欧洲、美国也分别建立了区域、城市温室气体监测系统。相比之下,我国温室气体监测起步较晚。因此,亟需建立我国独立自主的温室气体监测量值传递与质量控制体系,为准确核验温室气体排放量,实现“双碳”目标,提供可靠的数据支撑。通过总结国际温室气体监测量值溯源与传递体系、质量管理与质量控制体系等的先进经验,对我国温室气体监测提出以下建议:设立满足排放量准确评估要求的数据质量目标;研制独立自主、国际等效的高准确度基准标气;加快构建量值传递与质量控制体系,并建立健全相关技术标准规范;探索研究其他温室气体监测量值溯源与传递方法。  相似文献   

18.
高精度温室气体排放清单是摸清区域碳排放来源、识别时空演变特征的数据基础,也是政府部门科学制定“减污降碳”策略、实现“双碳”目标的科技支撑。通过调研国内外组织机构、科研团队在高精度排放清单方面的成果,从核算范围、核算方法、时空化方法、评估与校验4个方面介绍了我国温室气体排放清单编制方法的研究进展。针对我国高精度温室气体排放清单研究区域分散、方法与格式不统一的问题,提出我国清单编制要逐步统筹本地化、精细化和动态化的发展建议。  相似文献   

19.
It is universally recognized that direct carbon emissions based on energy consumption and industrial production lead to carbon leakage and inequality. This paper employs input–output analysis (IOA) and the hypothetical extraction method (HEM) to establish an embodied carbon analysis framework to resolve the above externalities. As a typical downstream consumption industry, the service sector has had very little work examining its embodied carbon transfer structure and related climate policies. In this paper, carbon flows of China's service sector between 1997 and 2015 are mapped and a scenario analysis is conducted that accounts for the service sector development plan and carbon emissions reduction targets. The results demonstrate that 13–19% of carbon flows in the Chinese economy are caused by the service sector's demand of other sectors. Controlling the industry scale and carbon intensity of its upstream industries effectively mitigates the dramatic growth of embodied carbon emissions in the service sector. The embodied carbon emissions accounting framework might provide new insights for the definition of emissions reduction responsibility on both a regional and sectoral scale. The further exploration of the service industry from this novel perspective will be helpful in realizing China's overall carbon emissions reduction goals.  相似文献   

20.
This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects on carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号