首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Metal accumulation in wild plants surrounding mining wastes   总被引:4,自引:0,他引:4  
Four sites were selected for collection of plants growing on polluted soil developed on tailings from Ag, Au, and Zn mines at the Zacatecas state in Mexico. Trace element concentrations varied between sites, the most polluted area was at El Bote mine near to Zacatecas city. The ranges of total concentration in soil were as follows: Cd 11-47, Ni 19-26, Pb 232-695, Mn 1132-2400, Cu 134-186 and Zn 116-827 mg kg(-1) air-dried soil weight. All soil samples had concentrations above typical values for non-polluted soils from the same soil types (Cd 0.6+/-0.3, Ni 52+/-4, Pb 41+/-3mg kg(-1)). However, for the majority of samples the DTPA-extractable element concentrations were less than 10% of the total. Some of the wild plants are potentially metal tolerant, because they were able to grow in highly polluted substrates. Plant metal analysis revealed that most species did not translocate metals to their aerial parts, therefore they behave as excluder plants. Polygonum aviculare accumulated Zn (9236 mg kg(-1)) at concentrations near to the criteria for hyperaccumulator plants. Jatropha dioica also accumulated high Zn (6249 mg kg(-1)) concentrations.  相似文献   

2.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

3.
Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb).  相似文献   

4.
Ninety-eight surface soils were sampled from the uplands of England and Wales, and analysed for loss-on-ignition (LOI), and total and dissolved base cations, Al, Fe, and trace heavy metals (Cu, Zn, Cd, Pb). The samples covered wide ranges of pH (3.4-8.3) and LOI (9-98%). Soil metal contents measured by extraction with 0.43 mol l-1 HNO3 and 0.1 mol l-1 EDTA were very similar, and generally lower than values obtained by extraction with a mixture of concentrated nitric and perchloric acids. Total heavy metal concentrations in soil solution depend positively upon soil metal content and [DOC], and negatively upon pH and LOI, values of r2 ranging from 0.39 (Cu) to 0.81 (Pb). Stronger correlations (r2=0.76-0.95) were obtained by multiple regression analysis involving free metal ion (Cu2+, Zn2+, Cd2+, Pb2+) concentrations calculated with the equilibrium speciation model WHAM/Model VI. The free metal ion concentrations depend positively upon MHNO3 and negatively upon pH and LOI. The data were also analysed by using WHAM/Model VI to describe solid-solution interactions as well as solution speciation; this involved calibrating each soil sample by adjusting the content of "active" humic matter to match the observed soil pH. The calibrated model provided fair predictions of total heavy metal concentrations in soil solution, and predicted free metal ion concentrations were in reasonable agreement with the values obtained from solution-only speciation calculations.  相似文献   

5.
Gil C  Boluda R  Ramos J 《Chemosphere》2004,55(7):1027-1034
This study determines total levels of three (Cd, Pb and Ni) potentially toxic trace elements in western Almería (Spain) greenhouse surface soil horizons using microwave digestion; it establishes the geochemical baseline concentration, and it investigates possible relationships between soil properties and elemental concentrations. The results show that the soil concentration of these heavy metals is lower than mentioned in the European and Spanish normative, but they are higher than those reported by other authors working on agricultural soils. The obtained geochemical baseline concentrations (mg kg(-1)) were: Cd 0.4-0.8, Pb 2.5-89.9 and Ni 16.1-30.7. Using the upper baseline criterion, 88% of greenhouse soils have relatively higher content of heavy metals because of their Cd, Pb and Ni concentration. Moreover, soil properties are related to heavy metals contents suggesting that among Cd, Pb and Ni have a similar origin and those total metal concentrations are controlled primarily by soil compositions.  相似文献   

6.
Bose S  Bhattacharyya AK 《Chemosphere》2008,70(7):1264-1272
The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.  相似文献   

7.
Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcóllar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha(-1)) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. The natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg(-1) TOC and 123, 170 and 275 microg g(-1) biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil.  相似文献   

8.
Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61mgkg(-1) Cr, 1.09mgkg(-1) Cd and Pb 28.28mgkg(-1), respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain.  相似文献   

9.
The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2-66.8 kg per 10 m(2) plot) to simulate the long-term effect that the smelting of non-ferrous metal ore has on arable soils. The treated soil became strongly contaminated with metals (Cd 3.2-106 mg/kg, Pb 146-3452 mg/kg, Zn 465-11 375 mg/kg). Concentrations of Cd, Pb, and Zn in barley grain, barley straw meadow bluegrass, red clover, and potatoes were generally low. The highest metal concentrations were found in potato tubers (intact), meadow bluegrass, and barley straw. The observed reduction in crop yield was probably the result of possible nutrient imbalances rather than of metal (Zn, Cu) phytotoxicities. Zn and Cd uptake by the plants can be described by the saturation (plateau) model (y = ax(b), b < 1). The relationship between Pb in the soil and plants was linear with an extremely low slope (0.0001-0.0003). No excessive dietary intake of Cd is expected when Cd concentrations in barley grain and potato tubers grown on the contaminated soil are not higher than 0.6 and 1.0 mg/kg, respectively. Based on the risk analysis and taking into account the saturation model of the soil-plant metal relationship, it was concluded that, under the conditions of this experiment (neutral soil pH), soil with Cd concentrations of up to 30 mg/kg is still safe for production of these crop plants.  相似文献   

10.
This study was conducted to investigate the effects of soil properties on the heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) at the field scale. The concentrations of cadmium (Cd), mercury (Hg), and chromium (Cr) in topsoil and vegetable samples from Nanhai district of Foshan city in the Pearl River Delta (PRD) were analyzed. The results showed that 56.5% of the soil samples exceeded the grade II of the Chinese Soil Environmental Quality Standard (GB 15618-1995) for Hg concentrations, while 8.70% and 17.4% of the vegetable samples exceeded the criteria of the Chinese Safety Qualification of Agricultural Products (GB 18406.1-2001) for Cd and Hg concentrations, respectively. The calculated bio-concentration factor (BCF; i.e., the ratio of the metal concentration in the edible parts of flowering Chinese cabbage to that in soil) values were ranked as: Cd (0.1415) > Cr (0.0061) > Hg (0.0012) (p < 0.01), which demonstrated that Cd was easier to be accumulated in the edible parts of flowering Chinese cabbage than Hg and Cr. Furthermore, the following relationships between (bio-concentration factor) BCF values (BCFs) and soil physicochemical properties were concluded from our results: i) the mean BCFs of coarse-textured soils were higher than those of fine-textured soils; ii) the BCFs decreased with increasing soil pH; iii) the soils with high organic matter(OM) and Cation exchange capacity (CEC) have low BCFs, resulting from their high sorption capacities for Cd, Hg, and Cr. The stepwise linear multiple regression analyses showed that total metal concentrations and available calcium in soils were two main factors controlling the accumulation of Cd, Hg, and Cr in the flowering Chinese cabbage.  相似文献   

11.
This study was conducted to investigate the effects of soil properties on the heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) at the field scale. The concentrations of cadmium (Cd), mercury (Hg), and chromium (Cr) in topsoil and vegetable samples from Nanhai district of Foshan city in the Pearl River Delta (PRD) were analyzed. The results showed that 56.5% of the soil samples exceeded the grade II of the Chinese Soil Environmental Quality Standard (GB 15618-1995) for Hg concentrations, while 8.70% and 17.4% of the vegetable samples exceeded the criteria of the Chinese Safety Qualification of Agricultural Products (GB 18406.1-2001) for Cd and Hg concentrations, respectively. The calculated bio-concentration factor (BCF; i.e., the ratio of the metal concentration in the edible parts of flowering Chinese cabbage to that in soil) values were ranked as: Cd (0.1415) > Cr (0.0061) > Hg (0.0012) (p < 0.01), which demonstrated that Cd was easier to be accumulated in the edible parts of flowering Chinese cabbage than Hg and Cr. Furthermore, the following relationships between (bio-concentration factor) BCF values (BCFs) and soil physicochemical properties were concluded from our results: i) the mean BCFs of coarse-textured soils were higher than those of fine-textured soils; ii) the BCFs decreased with increasing soil pH; iii) the soils with high organic matter(OM) and Cation exchange capacity (CEC) have low BCFs, resulting from their high sorption capacities for Cd, Hg, and Cr. The stepwise linear multiple regression analyses showed that total metal concentrations and available calcium in soils were two main factors controlling the accumulation of Cd, Hg, and Cr in the flowering Chinese cabbage.  相似文献   

12.
This paper compares the patterns of metal (Pb, Zn, Cd, Cu) accumulation in nine populations of the epigeic earthworm, Lumbricus rubellus, native on metalliferous soils, with the patterns of metal accumulation in batches of L. rubellus sampled from an uncontaminated site and maintained on the nine contaminated soils for 31 days under laboratory conditions. The primary findings were: (1) the Pb, Zn and Cd concentrations in the 'native' worms were significantly higher in most cases than in the 'introduced' worms; (2) multiple regression analyses indicated that the relationships between tissue and soil metal concentrations were similar for 'native' and 'introduced' worms; (3) high soil organic matter content reduced the bioavailability of Pb, but low pH increased Pb bioavailability. It was concluded that, although no phenotypic evidence of metal-tolerant ecotypes was obtained, the exposure of earthworms from uncontaminated soils to contaminated soils under laboratory conditions can provide meaningful integrative data concerning metal bioavailability in soils which, for biomonitoring purposes, often present formidable sampling problems.  相似文献   

13.
The enhancement of photodegradation efficiency using Pt-TiO2 catalyst   总被引:19,自引:0,他引:19  
Li FB  Li XZ 《Chemosphere》2002,47(10):1103-1111
The residues from the extraction of lead/zinc (Pb/Zn) ores of most Pb/Zn mines are permanently stored in tailings ponds, which require revegetation to reduce their environmental impact. This can only be done if the main constraints on plant establishment are evaluated. This can readily be done by field and greenhouse studies.

To test this, the properties of different tailings from Lechang Pb/Zn mine located at the north of Guangdong Province in southern China have been studied. Physical and chemical properties including concentrations of metals (Pb, Zn, Cd and Cu) in the tailings and soils collected from different sites have been measured. The results showed that tailings contain low nitrogen (0.016–0.075%), low-organic matter (0.58–1.78%), high salt (3.55–13.85 dS/m), and high total and diethylene–tetramine–pentaacetic acid (DTPA)-extractable metal concentrations (total: 1019–1642 μg g−1 Pb, 3078–6773 μg g−1 Zn, 8–23 μg g−1 Cd, and 85–192 μg g−1 Cu; DTPA-extractable: 59–178 μg g−1 Pb, 21–200 μg g−1 Zn, 0.30–1.5 μg g−1 Cd, and 4.3–12 μg g−1 Cu). Aqueous extracts of tailings/soils (10%, 20% and 30%, w/v) from different sites were prepared for testing their effects on seed germination and root elongation of a vegetable crop Brassica chinensis and a grass species Cynodon dactylon. It was found that root elongation provided a better evaluation of toxicity than seed germination. The ranking of toxicity using root elongation was: high-sulfur tailings>tailingdam>sparsely vegetated tailings>densely vegetated tailings>mountain soil for both plants. This order was consistent with DTPA-extractable Pb contents in the tailings and soils. B. chinensis seedlings were then grown in the mixtures of different proportions of tailings and farm soil for 4 weeks, and the results (dry weights of seedlings) were in line with the root elongation test. All these demonstrated that heavy metal toxicity, especially available Pb, low content of nutrient, and poor physical structure were major constraints on plant establishment and colonization on the Pb/Zn mine tailings.  相似文献   


14.
Bioaccumulation of heavy metals in terrestrial invertebrates.   总被引:9,自引:0,他引:9  
In this literature study, accumulation data of metals in terrestrial invertebrates were collected and compared (Arthropoda and Lumbricidae). Based on total soil concentrations and body concentrations, regression equations were calculated for each metal (Cd, Cu, Pb and Zn) and each taxonomic group. We also tried to find out whether or not accumulation levels of metals in Lumbricidae are representative for all of the studied terrestrial invertebrates. Taxonomic groups could be ordered according to the extent of metal accumulation. Significant differences in accumulation levels of a factor 2-12 were found between taxonomic groups. Overall, metal concentrations were high in Isopoda and low in Coleoptera. The concentrations in Lumbricidae were in between. It should be kept in mind that the data for Lumbricidae were mainly derived from laboratory experiments, while the data for other groups were derived from field studies. The internal Pb, Cd and Cu concentration increased with the soil concentration for most taxonomic groups in the order Pb > Cd > Cu. Body concentrations of Zn were quite constant over a range of soil concentrations. The differences in accumulation level between taxonomic groups show the relevance of including detailed information on feeding behaviour in risk assessment for invertebrate-eating animals.  相似文献   

15.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

16.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

17.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

18.
In this field experiment, sewage sludge was applied at 0, 5, 10, and 50tha(-1), and the availability of Cd, Ni, Pb, and Zn was assessed both by ryegrass uptake and by DTPA extractions. The aim was to investigate the role of important soil parameters, particularly pH, on heavy metal availability. It was found that metal uptake and extractability increased significantly in the 50tha(-1) treatment. In the 16th week of the experiment there was a significant, although temporary, increase in DTPA-extractable Cd, Ni, and Zn concentrations. Metal concentrations in ryegrass were also significantly elevated in week 20 compared to the subsequent cuttings. These fluctuations in both DTPA and ryegrass uptake occurred only at 50tha(-1) and were probably induced by a sudden pH decrease measured in the same treatment in week 16. This suggests that soils which have received high applications of sewage sludge may be prone to fluctuations in metal availability.  相似文献   

19.
The results of seven years lysimeter experiments to determine the uptake of 60Co, 137Cs and 226Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8 degrees C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF's (dry matter basis) for the three radionuclides decreased from 226Ra (0.068 kg kg(-1)) to 137Cs (0.043 kg kg(-1)) and 60Co (0.018 kg kg(-1)); flux values exhibited the same ranking. The varying physical and chemical properties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for 137Cs and 226Ra, but not for 60Co. Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing, on average, TF values 5.8 and 15 times lower than dicotyledonous species for 137Cs and 60Co, respectively. This pattern was not found for 226Ra. It can be concluded that 137Cs transfer is heavily influenced by soil characteristics, whilst the plant-specific factors are the main source of TF variability for 60Co. The variability of 226Ra transfer originates both from soil properties and plant species behaviour.  相似文献   

20.
The Siam weed, Chromolaena odorata (L.) King & Robinson, Family Asteraceae, was found to be a new Pb hyperaccumulator by means of field surveys on Pb soil and hydroponic studies. Plants from field collection accumulated 1377 and 4236mgkg(-1) Pb in their shoots and roots, respectively, and could tolerate soil Pb concentrations up to 100000 mgkg(-1) with a translocation factor of 7.62. Very low concentrations of Cd and Zn were found in plants collected from the field. Under nutrient solution culture condition, C. odorata from the contaminated site (CS) and from non-contaminated site (NCS) grew normally with all three metals (Pb, Cd, Zn) supplied. However, the relative growth rates of all treated plants decreased with increased metal concentrations. The percentage uptakes of Pb, Cd, and Zn by C. odorata increased with increasing metal concentrations. Pb concentration in shoots and roots reached its highest values (1772.3 and 60655.7mgkg(-1), respectively) at a Pb supply level of 10mgl(-1). While the maximum concentrations of Cd (0.5mgl(-1)) in shoots and roots of C. odorata were 102.3 and 1440.9mgkg(-1), and the highest concentrations of Zn (20mgl(-1)) were 1876.0 and 7011.8mgkg(-1), respectively. The bioaccumulation coefficients of Pb and Cd were greater than 1000. These results confirm that C. odorata is a hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and has a potential for the phytoremediation of metal contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号