首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of activity and metabolism were investigated in larval Atlantic cod (Gadus morhua L.) between December 1991 and July 1992: (1) throughout larval development; (2) between two genetically discrete populations (Scotian Shelf and Newfoundland) and (3) as a function of two different culture temperatures. During the yolk-sac stage (0 to 5 d post-hatch), changes in swimming speed were not related to mass-specific metabolic rates; no portion of the mass-specific oxygen consumption could be explained by changes in activity. In the mixed feeding stage (6 to 14 d posthatch), there was a tendency for oxygen consumption to be related to changes in swimming speed. In the exogenous feeding stage (>14 d post-hatch), oxygen consumption significantly increased with swimming speed. These ontogenetic patterns of activity and metabolism were the same for larvae from the Scotian Shelf and Newfoundland populations. However, over the entire larval life and among ontogenetic stages, the metabolic cost of activity (mass-specific O2 consumption/swimming speed) of Scotian Shelf larvae was significantly higher than that of Newfoundland larvae. When cod larvae, that had developed at 5°C, were acutely exposed to 10°C, Scotian Shelf larvae had a higher intrinsic cost of activity than Newfoundland larvae, over the entire larval life. During the exogenous feeding stage, the mean metabolic cost of activity for Newfoundland larvae raised at 10°C and tested at 10°C was significantly higher and more variable than that of larvae raised at lower temperatures. However, the metabolic cost of activity of larvae raised and tested at 10°C was not significantly different between source populations. Together these findings suggest that differences in swimming energetics reflect changing energy requirements for activity among ontogenetic stages, and reflect adaptation to regional environments among genetically discrete populations.  相似文献   

2.
Large Atlantic halibut (Hippoglossus hippoglossus) off the eastern coast of Canada were tagged with pop-up satellite archival transmission tags (N = 17) to track movements, determine ambient depth and temperature, and infer spawning activity. Many halibut showed seasonal movements from deepwater slope areas in fall and winter to shallower feeding grounds on the Scotian Shelf and Grand Banks in summer. Halibut depths ranged between 0 and 1,640 m. Mean temperature of occupation was 4.7 °C. Multiple short-term vertical ascents from a consistent baseline depth, characterized as spawning rises, were identified in seven of the tagged halibut south of the Grand Banks. All presumed spawning rises occurred in multiples of 2–6 events at 2- to 9-day intervals between October and January, spanning an average vertical extent of 50–100 m at depths of about 800–1,000 m. Given the direction and velocity of the slope water currents and the duration of the pelagic stage, the calculated 300–500 km drift of the eggs and larvae would take them onto the Scotian Shelf, as well as into the Gulf of St. Lawrence. Therefore, the location of the presumed spawning grounds is consistent with expectations based on migration compensation theory, the northeasterly migratory patterns of the juveniles, the relatively static distribution of the adults off southern Newfoundland, and the prevailing currents at depth.  相似文献   

3.
Northern shrimp Pandalus borealis (Krøyer) larvae hatch in the northern Gulf of St. Lawrence from early May to the end of June, and larval development occurs over a range of relatively cold water temperatures. Because of the long duration of the pelagic phase and the difficulty of sampling all successive larval stages at sea, we used laboratory experiments to assess the effects of water temperature on larval development and growth. In spring 2000, P. borealis larvae were reared from hatching to the first juvenile stages (i.e., stage VI and VII) at three temperatures (3, 5, and 8°C) representing conditions similar to those in spring in the northern Gulf of St. Lawrence. Larval development and growth were dependent on temperature, with longer duration and smaller size (cephalothorax length, CL, and dry mass, DM) at 3°C relative to the 5 and 8°C treatments. There were no significant differences in the morphological characters of the different stages among treatments, indicating that regular moults occurred at each temperature. The results suggest a negative impact of cold temperatures (lower intra-moult growth rates and smaller size) and, possibly, higher cumulative mortality due to longer development time that could affect the success of cohorts at sea. However, CL and DM for stage III and later larvae were smaller than those of larvae identified at the same developmental stage in field locations. It is possible that the diet offered to larvae in this experiment (Artemia nauplii, either newly hatched nauplii or live adults, depending on the developmental stage) was not optimal for growth, even though it is known to support successful P. borealis larval development. In the field, there is the possibility that phytoplankton contributes to the larval diet during the first stages and stimulates development of the digestive glands. Furthermore, the nutritional quality of the natural plankton diet (e.g., high protein content, fatty acid composition) might be superior and favourable to higher growth rates even at lower temperatures.Communicated by R.J. Thompson, St. Johns  相似文献   

4.
Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20 S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.  相似文献   

5.
D. Ó Foighil 《Marine Biology》1989,103(3):349-358
Members of the intertidal, near-cosmopolitan mollusc genus Lasaea brood their young either to a planktotrophic veliger or crawl-away juvenile stage of development. Developmental mode can be reliably inferred from brood masses and from prodissoconch structure. I have conducted a global developmental survey of this genus based mainly on examination of hundreds of museum lots. With one exception, Lasaea species with a planktotrophic larval development were restricted to the western Pacific. Congeners that lack planktotrophic larvae were found on all continents apart from Antarctica, and also on a large number of oceanic islands. These results indicate that (1) Lasaea species releasing crawl-away juveniles have a markedly greater collective geographic range than congeners with planktotrophic larvae; (2) pelagic larvae are not necessary for long-distance dispersal in this genus; (3) rafting has played a key role in the evolutionary success of the genus Lasaea; (4) cross-fertilizing Lasaea species with feeding larvae are less successful in utilizing chance rafting events to colonize new areas than are congeners lacking these traits.  相似文献   

6.
Stomach contents and intestinal parasite faunas of 471 individuals of demersal fishes in 14 species were examined from the Carson Canyon region (Lat. 45°30N; Long. 48°40W) of the upper continental slope of the Grand Banks off Newfoundland, Canada. Individual species tended to feed either on benthic or on pelagic/benthopelagic organisms, but pelagic prey assumed the greatest importance overall. Data from stomach contents were supported by the parasite information. Prevalence of parasites was higher in benthic feeders (53.1%) than in pelagic feeders (28.9%), and relative abundance by major group was: Digenetic Trematoda 5.8% benthic vs 27.8% pelagic, Nematoda 53.1% vs 72.2%, and Acanthocephala 40.9% vs 0%. Of the dominant fishes, there were more species of benthic feeders (5) than pelagic feeders (3), but pelagic feeders were numerically more abundant (pelagic 70.9%, benthic 20.5%). Benthic feeders were on average larger (=270.6g) than pelagic ones (=130.6g), but pelagic feeders represented a larger proportion of the biomass (pelagic 43.3%, benthic 25.9%). The results of this study combined with those from other areas suggest that feeding from the pelagial by demersal fishes at upper continental slope depths is probably the general rule.  相似文献   

7.
Feeding of fish depends on a spatial and temporal match with prey, and since larval and juvenile feeding can be highly selective, their preferences for given prey sizes and taxa should be considered when quantifying the actual availability of potential prey. We investigated the diet and prey preferences of the early-life stages of Atlantic cod (Gadus morhua) to quantify the availability of prey during a spring-summer season in a West Greenlandic fjord. We hypothesized that abundances of larval and juvenile cod at size were synchronized to optimal availability of preferred prey in space and time. The present analysis is based on nine cruises each covering 5 stations visited between 24 May and 5 August 2010 comparing zooplankton abundance, cod gut content and distribution patterns. Cod 4–25 mm in length preferred prey of about 5 % of their own length. During ontogeny, their preferences changed from calanoid nauplii towards Pseudocalanus spp. and Calanus spp. copepodites. The larvae/juvenile had an exceptionally high dietary contribution from cladocerans, which were highly preferred by cod larger than 9 mm, while the abundant Metridia longa and the non-calanoid copepods contributed less. These findings stress the importance of focusing on abundance of preferred prey when assessing the actual prey availability to young fish. We found a spatio-temporal overlap between cod and their preferred prey, and observations suggest that advection of both zooplankton and cod contributed to this overlap. Hence, the larval feeding opportunities might be sensitive to climate-related changes affecting the circulation patterns in this fjord.  相似文献   

8.
Feeding by larvae of the sea bream Archosargus rhomboidalis (Linnaeus) was investigated from late September, 1972 to early May, 1973 using laboratory-reared larvae. Fertilized eggs were collected from plankton tows in Biscayne Bay, and the larvae were reared on zooplankton also collected in plankton nets. Techniques were developed to estimate feeding rate, food selection, gross growth efficiency, and daily ration. Daily estimates of these were obtained through 16 days after hatching at rearing temperatures of 23°, 26°, and 29°C. Feeding rate increased exponentially as the larvae grew, and increased as temperature was raised. At 23°C larvae began feeding on Day 3, at 26° and 29°C larvae began feeding on Day 2. Feeding rates at initiation of feeding and on Day 16 were, respectively: 23°C, 7.16 food organisms per larva per hour (flh) and 53.78 flh; 26°C, 7.90 flh and 168.80 flh; 29°C, 17.62 flh and 142.07 flh. Sea bream larvae selected food organisms by size. At initiation of feeding they selected organisms less than 100 m in width. As larvae grew they selected larger organisms and rejected smaller ones. The major food (more than85% of the organisms ingested) was copepod nauplii, copepodites, and copepod adults. Minor food items were barnacle nauplii, tintinnids, invertebrate eggs, and polychaete larvae. Mean values for gross growth efficiency of sea bream larvae ranged from 30.6% at 23°C to 23.9% at 29°C. Mean values for daily ration, expressed as a percentage of larval weight, ranged from 84% at 23°C to 151% at 29°C and tended to decline as the larvae grew.This paper is a contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA  相似文献   

9.
Observations on breeding season, copulation, spawning, and development are described for Paedoclione doliiformis, the only gymnosomatous pteropod which consistently retains external larval features throughout its life. The number of eggs spawned per individual is dependent upon temperature and availability of Spiratella retroversa, its thecosome prey. At 17° to 19°C, planktotrophic veligers hatch from floating egg masses within 3 days, and cast their shells approximately 11 days later. The resultant shell-less veligers could complete metamorphosis to the polytrochous larval stage, in which the body is encircled by 3 ciliary bands, within 12 h. Some polytrochous larvae begin feeding on veligers of S. retroversa within 2 days. Unlike other gymnosome species, there is no further change in external appearance except for growth. A comparison of reproduction and development has been made with Clione limacina, another gymnosome which competes for food with P. doliiformis in Nova Scotian (Canada) coastal waters.  相似文献   

10.
Phylogenetic analyses have demonstrated that nonfeeding larvae have evolved from feeding larvae many times among marine invertebrates. In light of this observation, it is surprising that an intermediate strategy, a larva that can feed but is provisioned with enough energy to metamorphose without acquiring exogenous food (i.e., facultative planktotrophy), is rare. A hypothesis for the lack of facultative planktotrophic species among marine invertebrates is that the transition from feeding to nonfeeding is rapid due to this intermediate stage being evolutionarily unstable. Evidence that would support this hypothesis is if species with facultative planktotrophy have reduced food assimilation when compared with obligate planktotrophs. We studied a species with facultative planktotrophic larvae, Clypeaster rosaceus, that is very near the boundary between facultative and obligatory planktotrophy, to answer two questions: (1) does feeding during the larval stage result in energy gains in larval or juvenile stages and (2) if not, are larvae capable of assimilating exogenous food at all. Our measurements of energetics in larval and juvenile stages show that C. rosaceus larvae accumulate very little if any energy when fed, but stable isotope data indicate that larvae are able to assimilate some food. Our results are consistent with similar studies on facultative planktotrophic larvae suggesting poor food assimilation and rapid loss of larval feeding after a population evolves the ability to reach metamorphosis without feeding (lecithotrophy).  相似文献   

11.
Survival of individually reared larval and juvenile stage lobsters, Homarus americanus (Milne-Edwards), was significantly higher than in corresponding groups of communally reared individuals. Among communally reared lobsters, the mortality rate was highest in the second-stage larvae and then progressively decreased in the later stages. The relationship between survival and duration of molt period of each life-cycle stage indicates that asynchronous molting in the groups of communally reared lobsters is a contributing factor to the higher mortality rate. The molting and mortality curves of communally held lobsters reared from the first larval to first or second juvenile stage showed best cross correlation at 0- or 1-day time lag. The decreased mortality rate observed in the later larval and juvenile stages appears to have resulted from the establishment of new behavior patterns. Group interactions which are influenced by numerous extrinsic and intrinsic factors lead to higher mortality rate (cannibalism) among communally reared lobsters.  相似文献   

12.
Larvae of the bivalve molluso Adula californiensis (Phillippi, 1847) were reared for 3 days, from fertilization to veliger stage, at optimum conditions (15°C, 32.2 S), and then transferred to experimental temperatures and salinities for 22 more days to determine the effects of these factors on survival and growth. For larvae surviving to 25 days, maximum survival was estimated, by response-surface techniques, to occur at temperatures below 10°C and at salinities above 25. A comparison of 60% survival response contours for 3, 15 and 25-day old larvae indicated a progressive shift in temperature and salinity tolerance with age of larvae. The older larvae became more tolerant to reduced salinity, but less tolerant to high temperatures. Growth of the larvae over 25 days of culture was slight, and relatively independent of temperature and salinity conditions found in the environment. Oxygen consumption of 3-day old veliger larvae measured at various combinations of temperature and salinity generally increased from 7° to 18°C, and then sharply decreased from 18° to 21°C. A plateau of oxygen consumption from 9° to 15°C at 32.9 S indicated that the larvae are adapted to oceanic rather than estuarine conditions. A comparison of 25-day larval survival, mean length, and growth, with oxygen consumption of 3-day old veliger larvae indicated that high temperatures (15°C, and above) coupled with reduced salinities (26.1, and below) were unfavorable for prolonged larval life. Because of the lack of larval adaptations to estuarine conditions, larva survival and, hence, successful recruitment of this species within Yaquina Bay (Oregon, USA) depends upon the essentially oceanic conditions found only during the summer in the lower part of the Bay.  相似文献   

13.
Larvae of the estuarine grass shrimp Palaemonetes pugio (Holthuis) were reared from hatch through successful completion of metamorphosis in 80 combinations of salinity (3 to 31%), temperature (20° to 35°C), and zinc (0.00 to 1.00 ppm Zn++). Response-surface methodology was employed to depict the individual effects and interactions of the three factors on survival and developmental duration through total larval development. Outside the optimal salinity-temperature conditions of 17 to 27 S and 20° to 27°C, viability of larvae was reduced by both the individual effects of salinity and temperature and interactions between the two factors. Survival capacity of larvae and resistance adaptations to salinity and temperature were progresively reduced by zinc concentrations from 0.25 to 1.00 ppm Zn++. Response-surface analysis of the data suggested that the duration of total larval development of P. pugio was least at salinities from 18 to 23 and at temperatures from 30° to 32°C. At both higher and lower salinity-temperature conditions and in increasing zinc concentrations from 0.25 to 1.00 ppm Zn++, developmental rates were retarded. A significant zinc-temperature interaction existed, whereby increasing zinc concentrations reduced both survival and developmental rates of larvae more at suboptimal temperatures. Larval resistance to zinc toxicity was least at supraoptimal salinities, indicative of a significant zinc-salinity interaction. The reduced viability, restricted euryplasticity, and retarded developmental rates of P. pugio larvae developing in media with low-level zinc contamination would limit the distributive properties of the pelagic phase in the life cycle of the species and reduce recruitment both into and out of the parent estuarine population.  相似文献   

14.
The distribution and abundance of the late-stage phyllosoma larvae of Panulirus longipes cygnus George and the distribution and densities of the final larval stage, the puerulus, both in the plankton and at settlement along the coast, were investigated. A total of 3,617 late-stage phyllosoma (Stages VI to IX) and 301 puerulus larvae were caught at 187 plankton stations during the July to November periods 1974, 1975 and 1976 off the west coast of Australia between 29°00 to 32°30S and 113°30 to 115°00E. The depth range sampled was 0 to 35 m on the continental shelf and 0 to 90 m off the shelf. During onshore/offshore cruises with similar sampling effort on and off the shelf, 1,169 late-stage phyllosoma larvae were taken, of which only 9 were caught on the shelf, and these near the outer edge. A series of cruises sampling two areas beyond the shelf near 29°30 and 32°00S yielded 2448 late-stage phyllosoma, with greater densities of larvae in the northern location. The settlement of puerulus-stage larvae along the coast in the same geographical range was also greater in the north than in the south. The data from the onshore/offshore cruises showed a definite effect of moon phase on numbers of puerulus larvae caught on the shelf, with higher catches near new moon. The low numbers of puerulus larvae (usually 0, 1 or 2 individuals) caught at all stations showed that the puerulus stage is sparsely distributed in the plankton. Fewer puerulus larvae were present at the surface than at lower depths, but it was not possible to determine a depth preference for the puerulus between 10 m and the lowest depths sampled because of the low catch numbers. No relationships were found between puerulus larvae density and surface-water temperature, salinity, or plankton biomass at each station. Data on the larval distributions indicate that, near the end of their planktonic existence, the majority of the late-stage phyllosoma larvae of P. longipes cygnus are not carried onto the shelf, where mixing of oceanic and continental shelf waters occurs only on the outer third, but are transported southward by oceanic circulation beyond the shelf. The puerulus moults from the last phyllosoma stage beyond the shelf and completes the larval cycle by swimming across the shelf and settling in the shallow reef areas.  相似文献   

15.
Eggs from laboratory spawnings of the coralreef fish Siganus randalli Woodland were incubated at two temperatures (27 and 30 °C). Eggs and larvae were sampled until larval starvation, while changes in oxygen consumption, growth, yolk utilization, and development were monitored. Oxygen consumption, which peaked at hatching, was higher for embryos incubated at 30 °C than at 27 °C. Rates of oxygen consumption (nl h-1 individual-1) at hatching were similar to those for other temperate and tropical species. Rates of oxygen consumption by yolk-sac larvae were highly variable, and these data suggest that larval oxygen consumption prior to yolk-sac absorption may not be significantly influenced by temperature. Rates of yolk depletion were higher for larvae at the higher temperature. After an initial rapid increase in length, length of larvae at 30 °C decreased with age. Egg size, egg weight, and maximum notochord length of larvae differed significantly between spawns. Age-specific oxygen consumption rates by the embryos varied between spawns, but regressions describing oxygen consumption as a function of age did not differ significantly. The initiation and completion of eye pigmentation were used as developmental markers to calculate the amount of yolk remaining for larvae at the different temperatures. Larvae maintained at 30 °C completed eye pigmentation approximately 3 h sooner than those maintained at 27 °C, but had less endogenous reserves. This finding indicates a trade-off between rapid development and efficient utilization of the endogenous reserves. The completion of eye pigmentation in larvae incubated at the higher temperature occurred at midnight and, depending on the amount of time that the larvae have to initiate feeding prior to the point-of-no-return, the timing of completion of eye pigmentation could influence larval survival.  相似文献   

16.
The mode of development was ascertained for 14 of the 16 species of sea stars known to occur in shallow waters of McMurdo Sound, Antarctica (77°51S; 166°40E). The species were collected between September 1984 and December 1985. Females of three species,Odontaster validus, O. meridionalis andPorania antarctica, spawn small to moderate eggs (0.17 to 0.55 mm), have a high fecundity, and produce feeding larvae. Females of an undescribedPorania species spawn a few eggs (150 to 310) that are 0.55 mm in diameter and develop into demersal non-feeding larvae. Females ofDiplasterias brucei andNotasterias armata produce a few (<300) large eggs (2.8 to 3.5 mm) and brood their young. Females of the remaining eight species have moderate fecundity and produce pelagic non-feeding larvae, as determined from egg type (buoyant, 0.54 to 1.28 mm diam) and direct observations of spawning and development. The high incidence (11 out of 14 species; 79%) of non-feeding development is consistent with predictions that environmental conditions in high-latitude regions are unfavorable for planktotrophic development. Nonetheless, most of the species surveyed (11 out of 14) had pelagic larvae, which contradicts inferences of unusual selection for benthic development in the Antarctic.  相似文献   

17.
The continental shelf ecosystem on the Eastern Scotian Shelf (ESS) has experienced drastic changes. Once common top predators are a small fraction of their historical abundance, and much of the current community structure is now dominated by pelagic fishes and invertebrates. Embedded within this food web, Atlantic cod and gray seal populations have recently exhibited nearly opposite trends. Since 1984, cod populations have decreased exponentially at a rate averaging 17% per year, whereas gray seals have continued to increase exponentially at a rate of 12%. We reexamined the impact of gray seals on Atlantic cod dynamics using more than 30 years of data on the population trends of cod and gray seals while incorporating new information on seal diet and seasonal distribution. The closure of the cod fishery over 10 years ago allowed for a better estimation of natural mortality rates. We quantified the impact of seals on ESS cod by (1) estimating trends in seal and cod abundance, (2) estimating the total energy needed for seal growth and maintenance from an energetics model, (3) using estimates of the percentage of cod in the total diet derived from quantitative fatty acid signature analysis (QFASA) and of the size-specific selectivity of cod consumed (derived from otoliths collected from fecal samples), and (4) assuming a gray seal functional response. Uncertainties of the model estimates were calculated using the Hessian approximation of the variance-covariance matrix. Between 1993 and 2000, cod comprised, on average, < 5% of a gray seal's diet. Our model shows that, since the closure of the fishery, gray seals have imposed a significant level of instantaneous mortality (0.21), and along with other unknown sources of natural mortality (0.62), are contributing to the failure of this cod stock to recover.  相似文献   

18.
The garpike Belone belone enters the Wadden Sea in April, to spawn in May and June. The large eggs (3mm) bear numerous, long hair-like filaments. Embryonic and larval development were investigated during rearing experiments in 1970 and 1971. The development of the embryo is described, with special reference to the circulatory system and Kupffer's vesicles. The embryos display ventilation with pectoral fins and gill opercula when still in the egg. They hatch after 2 or 3 weeks at 20° and 16°C, respectively. Newly hatched larvae accept a wide variety of prey, including dry, aquarium fish food. Growth, feeding behaviour, swimming performance, and survival of the juveniles were investigated in the laboratory and in a small outdoor pond. Young garpikes (1 to 3 cm standard length) survive at temperatures ranging from 13° to 25°C, and salinities from 7 to 50%. They may reach 12 to 15 cm in their first summer. Their cruising speed is estimated to be 1 to 2 body lengths/sec. Garpikes disappear from The Wadden Sea in October, and probably migrate offshore. Observations on the behaviour of adults (40 to 70 cm total length) in a large indoor tank, indicate that they avoid high light intensities in winter. Adults display panic reactions when the water temperature drops below 6° to 7°C; this indicates that garpikes probably migrate in winter to greater depth (lower light intensity), to avoid water temperatures below 6°C and rough weather conditions in the upper water layers.  相似文献   

19.
RNA-DNA ratio: an index of larval fish growth in the sea   总被引:1,自引:0,他引:1  
Data on water temperature, RNA-DNA ratio, and growth of eight species of temperate marine fish larvae reared in the laboratory were fit to the equation: $$G_{pi} = 0.93{\text{ }}\operatorname{T} + 4.75{\text{ RNA - DNA}} - 18.18$$ where Gpi is the protein growth rate in % d-1 and T is the water temperature. Water temperature and larval RNA-DNA ratio explained 92% of the variability in growth rate of laboratory-reared larvae. The model is useful over the entire range of feeding levels (starvation to excess), temperatures (2° to 20°C) and fish species studied. Estimates of recent growth of larval cod, haddock, and sand lance caught at sea based on water temperature and RNA-DNA ratio ranged from negative to 26% d-1. These data demonstrate the importance of food availability in larval fish mortality and suggest that short-term growth under favorable conditions may be considerably higher than expected from long-term indicators. RNA-DNA ratio analysis offers new possibilities for understanding larval growth and mortality, and their relation to environmental variability.  相似文献   

20.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号