首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
长江口污染物运动轨迹模拟   总被引:2,自引:2,他引:0  
长江口流域污染物排放较多,受地形和水环境过程影响其运动规律极为复杂。为保护近岸海域水质环境,须在洞悉该区域环境水动力基础上开展污染物运动规律的研究。基于ECOMSED三维数值模型和拉格朗日粒子追踪技术,采用单个粒子以及粒子群模拟追踪了长江口的石洞口、竹园、白龙港三大污水排污口区域污染物质的运动轨迹,重点分析了水体表层、中层、底层污染物的运动特性及其影响范围,在此基础上,对该区域水体的排污设置方式提出了参考建议。  相似文献   

2.
基于2022年冬季三门湾海域20个定点站和2条走航测线的水温观测数据,分析了三门核电站冬季温排水的时空特征。受温排水影响,冬季观测海域表层水温通常为10 ℃~19 ℃。从垂向上看,位于排水口东侧的分层水温测站存在温度层化,表底温差平均值在大、小潮期间分别为0.16 ℃~1.21 ℃和0.51 ℃~2.37 ℃,小潮期间温度层化较强且持续时间较大潮期间长3~13 h;其余分层水温测站的水体总体呈混合均匀状态。涨急和涨憩时刻,温排水主要被限制在排水口外较小的区域,并向北经猫头水道进入蛇蟠水道;落急和落憩时刻,温排水则向南影响南部滩涂及其以东海域。以1 ℃温升为标准,涨潮时段温排水最远可影响到排水口西北约3 km处,落潮时段温排水最远可影响到排水口东南约5 km处。三门核电厂址以南各测站小潮期典型潮时水温通常比大潮期高0.5 ℃~5.0 ℃,说明三门核电站以南海域在小潮期受温排水的影响更大。  相似文献   

3.
张威  唐军  梁丙臣 《海洋环境科学》2017,36(1):29-36, 42
采用ECOMSED和“干、湿”点法构建了胶州湾潮流的三维动边界数值模型。模型验证良好,可以较好地模拟胶州湾潮流场。利用所建模型模拟了前湾填海工程前后胶州湾潮流场。基于Lagrangian粒子追踪法,采用单个粒子及粒子群模拟了前湾填海工程前后胶州湾污染物输运。对比工程前后污染物运动轨迹,分析了工程对胶州湾污染物输运的影响规律及范围。在此基础上,对胶州湾排污口的布置给出了参考建议。  相似文献   

4.
采用离散随机模型模拟了水平表面上气溶胶粒子沉积的微观过程.基于随机游走方法,求解了微粒在布朗扩散和外场迁移两种输运机制耦合作用下的运动轨迹,分析了沉积物形结构特征与微粒输运机制间的作用关系,并讨论了不同沉积机制和粒径分布下的表面沉积水平.结果表明,低Pe数下沉积物形态呈现疏松的粉尘絮团结构,而在高Pe数下沉积物则表现出较为紧密的堆积结构.不同沉积机制下粒子沉积形态结构的差异取决于微粒运动轨迹的随机强度;水平表面最大沉积微粒数存在一上限值,且与微粒输运机制和粒径分布均有关.  相似文献   

5.
夏秋季长江口及毗邻海域N、P营养盐分布及其潮汐变化   总被引:3,自引:1,他引:2  
根据2005年7月和11月在长江口及毗邻海域进行的现场观测数据,分析表明:夏秋季表层N、P营养盐的高值区(N>65 μmol/L,P>1.3 μmol/L)多位于长江口及杭州湾海域,而低值区(N<40 μmol/L,P<0.5μmol/L)多存在于长江口东北海域以及舟山东南海域,底层N、P营养盐在夏季存在-向东北方向的舌状扩散,而秋季等值线比较均匀且呈南北向分布;调查海域表层N/P值都超过30,羽状锋区可达到200以上,表明浮游植物的生长存在着磷限制;连续观测站位的PO-P含量在夏秋季大都表现为小潮高于大潮,而NO3-N含量变化复杂.  相似文献   

6.
本文建立了马袅湾三维水动力模型,并用水位、流速和流向等实测资料进行验证,分析马袅湾不同特征时刻的流场特征,构建水交换关联矩阵模型,计算马袅湾海域与毗连外海的水交换周期。为弄清养殖区内的海水去向和来源,进一步将马袅湾划分为包括养殖区在内的12个海区,计算湾内各海区的水交换周期。结果表明,马袅湾湾口流速明显高于湾内流速,最大流速约为1.1 m/s,湾内流场在大潮落急和涨急时刻分别呈明显的顺时针和逆时针的涡旋结构。马袅湾海域与外海交换的能力表现为大潮大于小潮的特点,大潮半交换周期平均约为8.2 h,小潮半交换周期约为21.1 h,且湾口海域水交换能力最强,半交换周期小于1 h。养殖区与毗连琼州海峡的海水交换最为显著,与其邻近的湾内一侧海区有一定的水交换过程,但几乎不与马袅湾湾底海域发生交换,表明养殖区选址合理。  相似文献   

7.
张学庆  王兴  刘睿  赵骞 《海洋环境科学》2016,35(1):20-26,67
河口的潮能通量和潮能耗散对河口的泥沙输运和地形地貌形成具有重要的参考价值,本文基于FVCOM(finite-volume coastal ocean model)模式研究了辽河口在潮流和径流相互作用下潮能通量和潮能耗散情况。结果表明:辽河口潮能通量最大的区域集中在盖州滩东南侧以及双台子河河口和大辽河口河道急剧缩窄及拐弯处;在两个河口随着径流量的增加,潮能耗散增强,丰水期耗散能量总体上大于平水期和枯水期;在大辽河口,大潮期间的各水期的耗能率约为小潮期间耗能率的两倍;一个潮周期内潮能通量最大值出现在高潮时刻,其值为56.08 KW/m,河流段最大值发生在河道拐角处,低潮时潮能通量最小。潮能通量和耗散的分布的研究结果对于了解辽河口海域的动力过程和河口沉积动力过程方面的研究具有重要意义。  相似文献   

8.
海流和海浪是水下溢油扩散的主要动力。基于数值模拟方法构建二维水槽模型分析了纯流、纯浪和波流耦合作用下原油从水底漂移扩散至水面的过程。结果表明波流耦合作用时溢油扩散具有纯流和纯浪影响下油粒子的运动特征,油粒子随水质点振荡的同时朝水流方向扩散。油粒子受水体的摩擦及掺混作用随其升高而变强,在油粒子上升到倾斜变化转折点时,溢油轨迹开始朝水流方向倾斜。另外,溢油量越大,引起的卷吸效应越显著,油粒子在横向和竖向上的扩散程度加剧。研究结果可为溢油事故应急处理提供参考依据。  相似文献   

9.
基于无结构三角网格的FVCOM海洋模式,以K1、O1、P1、Q1、M2、S2、N2和K2 8大分潮调和常数为驱动,建立了大连湾海域的高分辨率三维水动力数值模型。通过与实测数据的对比,该模型可以较好地模拟大连湾海域的水动力特征。在此基础上叠加DYE-RELEASE模块,模拟了大连湾整体和分区域的水交换过程,以半交换时间作为评价指标分析了水交换能力。模拟结果显示:示踪物质释放初始时刻对大连湾整体的半交换时间有影响,平均半交换时间为9.6 d~12.3 d。对比大、小潮期间的物质输运过程,大潮期间海湾平均示踪物质浓度下降速度更快,水交换能力更强。大连湾的半交换时间的空间分布特征表现为距离湾口越近,半交换时间越短;相同距离下,西南部较东北部半交换时间短。大连湾中部水交换能力最强,其次是红土堆子湾,甜水套湾和臭水套湾最差。  相似文献   

10.
基于三维FVCOM模型研究了象山港的潮流场特征,同时耦合Lagrange粒子追踪法及保守污染物输运模型,研究了湾内余环流结构、粒子长期迁移轨迹和湾内水交换特征等。结果表明:象山港海域为非正规的半日浅海潮,其中M2为其主要分潮;潮致余环流的特征明显,湾外分为两支,一支自牛鼻山水道东岸流入,绕六横岛经佛渡水道南部流出;第二支由佛渡水道进入湾内,并在口门内偏转再经牛鼻山水道西侧流出,其部分水体在牛鼻山水道中部与第一支汇合;西沪港以西峡湾内的余流基本指向湾口,西沪港内余流则指向口门;考虑湾内水体与湾外整体交换时,西沪港的污染物半交换时间在90 d左右,黄墩港和铁港内半交换时间在180 d左右,两支余流作用范围内的湾口半交换时间在20 d以内。  相似文献   

11.
本文以辽宁省兴城市曹庄海域潮滩为例,利用MIKE21建立该潮滩的二维水动力模型,在验证海域稳定深槽的潮位、潮流(流速、流向)基础上,对潮滩淹没过程的瞬时水边线和滩面潮流(流速、流向)进行验证,并分析潮汐特征及强风对潮滩水动力数值模型计算结果的影响。结果表明,该潮滩大、小潮均可实现淹没,每个周日滩面(0.5 m以上)淹没时间的平均值为5.8 h;滩面流场极为复杂,高潮时滩面流速达到最大值,普遍为30~40 cm/s且流向基本平行岸线;6~7强风条件对计算流场有较大的影响,1#、2#测站的计算流速较无风条件下增大43.8%和29.5%。  相似文献   

12.
应用水动力数学模型对江苏省如东县小洋口附近海域水质因子COD进行扩散场的模拟.模型采用正交曲线网格对整个计算区域进行剖分,对大、小潮情况下的流速、潮位及扩散场进行了研究,并利用排放口附近的现场实测水文资料进行验证.结果表明:水动力模拟结果与实测资料吻合较好.在大、小潮时各个阶段中,流速与流向对COD的迁移扩散起着决定作用,且小潮落憩时刻污水的影响范围最大.  相似文献   

13.
风浪作用下海岸区域的酸性污染物扩散   总被引:1,自引:0,他引:1  
基于风浪和水流计算模型,综合考虑风浪作用的影响,建立了计算酸性污染物的输移扩散模型。通过计算三门湾海域在常浪向情况下四个时刻的污染物排放模式,将有无风浪影响的两者结果进行对比,初步分析了风浪作用下的酸性污染物扩散规律。结果认为:潮型、排放时刻、风浪等因素都会使酸性污染物的扩散面积与污染持续时间发生变化;并且在该方向风浪影响下,扩散面积与污染持续时间都有减小的趋势。  相似文献   

14.
在Delft3D-FLOW模型模拟水动力的基础上,基于FBM粒子追踪法建立和验证赤潮迁移扩散模型.模拟了秦皇岛海域潮流和风生流,分析了风生流对赤潮迁移扩散的作用,对比分析了FBM法、拉格朗日法和常规布朗运动法在赤潮迁移扩散模拟中的特性,测试了模型Hurst指数的敏感性并得出其在赤潮模拟中的合理取值范围.主要结论为:①秦皇岛海域的赤潮主要随潮流的涨落而往复移动,一个涨落潮周期内赤潮的净迁移距离较小;②秦皇岛海域夏季潮流较弱,但风对赤潮迁移具有一定影响,易产生东北向风生流,导致赤潮更易往东北方向迁移;③Hurst指数较明显地影响粒子云的扩散范围,Hurst指数取0.80±0.03能比较真实地模拟秦皇岛海域赤潮的迁移扩散;④FBM法可模拟赤潮的non-Fickian扩散现象,使其模拟的粒子云扩散范围和分布形状明显优于拉格朗日法和常规布朗运动法.  相似文献   

15.
为了了解淡水下泄对电站海水脱硫系统的影响,本文采用Mike 21 Transport模块对越南某电厂工程附近开通运河后HCO3-离子进行了潮流和离子对流扩散数值模拟分析。研究选取2015—2016年上游径流流量实测资料,模拟了电厂典型大潮、小潮情况下HCO3-离子的扩散过程,得出12个月份电厂取水口处HCO3-离子浓度。计算结果表明:7—9月径流流量突增引起淡水下泄影响较大,取水口HCO3-平均浓度小于90 mg/L,最小平均浓度为78.32 mg/L,其余月份均在95 mg/L左右。根据不同月份的海水HCO3-浓度,通过改变电厂脱硫泵数量、选用不同含硫煤等措施,既能保证电场海水脱硫效率又能控制工程造价得以实现。  相似文献   

16.
河口湿地具备不同于其他生态系统的典型的生物化学特征. 利用开路式涡度相关系统,对长江口崇西湿地净生态系统CO2交换(NEE)进行了初步研究. 结果表明,生长季CO2交换呈V字型特征,平均CO2交换量为-0.06 mg/(m2>/sup>·s);非生长季无明显特征,平均CO2交换量为0.025 mg/(m2>/sup>·s). 这与其他生态系统CO2交换特征相符合,主要是生长季的植被光合固碳作用所致. 非生长季的净生态系统CO2交换比生长季受土壤温度的影响更大. 大潮期和小潮期的CO2交换表明,无论是生长季还是非生长季,小潮期从生态系统释放到大气的CO2均高于大潮期,潮汐高度与CO2释放量呈负相关,暗示着高水位抑制生态系统呼吸和阻碍CO2的传输,从而减少了CO2的释放. 通过分析大潮期和小潮期的植被净光合速率发现,同一地点的植被固碳过程受潮汐的影响不很明显. 潮汐对净生态系统CO2交换的影响主要是减少了土壤呼吸释放CO2的过程. 总体而言,崇西湿地在年周期内表现为CO2的汇.   相似文献   

17.
长江下游及河口区水动力特征   总被引:1,自引:0,他引:1       下载免费PDF全文
基于EFDC模型,构建长江下游及河口区二维水动力模型,对河流和河口区进行整体模拟,研究长江下游及河口区水动力特征.模型在空间上采用变尺度、拟合边界的矩形网格,在时间上采用动态时间步长,在模拟过程中自动识别干湿网格,更好地保证模拟精度与效率.利用1998年冬季以及2005年夏季和秋季实测资料,对粗糙高度等敏感参数进行参数率定和验证.结果表明,模拟的潮位和流速与实测成果拟合较好,较好地反映了各水期长江下游及河口区的水动力要素的空间分布特征.应用模型模拟2004-2007年不同水期的水动力过程,并对模拟结果进行统计分析.研究显示:从空间来看,河道、河口流态存在显著差异,涨、落潮流场空间分布差异大;受径流和潮差的相互作用,潮流界在河口以上150~450 km之间变动,径流量和潮流界位置具有对数相关关系.从时间来看,径流量丰平枯变化大,对潮流量和径流入海时间都有一定的影响,潮流量、径流入海时间与径流量之间也存在明显的定量关系.   相似文献   

18.
感潮河段污水处理厂尾水排放对受纳水体产生一定影响,利用二维水动力水质耦合模型,以COD、NH3-N、TP为污染因子,分别以正常排放和事故排放两种条件,模拟江苏南部某污水处理厂尾水排放,分析江段大小潮时污染物浓度增量情况。实验结果表明:正常排放,尾水对排放口附近江段保护区水质影响小;事故排放,尾水对保护区水质无影响,但长江水体影响范围增大,沿岸污染物浓度增高,且小潮周期影响作用强于大潮周期,污水处理厂应加强管理,尤其在小潮时应避免污水事故排放。  相似文献   

19.
通过建立曹妃甸海域潮流、污染物输运数学模型,分析了洪枯季曹妃甸海域化学需氧量(COD)的变化规律。结果表明:季节性入海通量决定COD浓度空间分布,海域潮流运动控制COD动态迁移过程。曹妃甸甸头东部海域二泄大庄河口洪枯季均为COD高浓度区,最大浓度可达2.2 mg/L,大清河及二滦河COD浓度枯季明显降低,污染物涨潮向SW运移并向外海扩展,落潮沿NE向河口输运。甸头西侧海域COD浓度分布季节性变化不大,COD浓度主要集中于沙河口以及三友化工排污口附近海域,在NW-SE潮流作用下,COD呈涨潮向河口输运,落潮流向外海扩散的运动规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号