首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
活性污泥-生物膜复合工艺在春夏之交常发生红斑顠体虫的爆发性繁殖,使系统性能恶化。用烧杯实验模拟活性污泥-生物膜复合工艺,保持填料投配率为30%,分别在不同温度下(20,25,30℃)运行实验装置,待运行稳定后,接种红斑顠体虫,创造条件以观察红斑顠体虫是否发生爆发性繁殖。实验结果发现,红斑顠体虫在25℃和30℃都不同程度产生了爆发性繁殖,最大种群密度分别达到383个/mL和200个/mL,同时,红斑顠体虫的爆发性繁殖不会对进出水的COD和氨氮去除产生影响;在温度25℃和30℃时,红斑顠体虫爆发性繁殖都导致了总氮的释放,红斑顠体虫种群密度分别大于等于66个/mL和50个/mL可分别作为红斑顠体虫在25℃和30℃发生爆发性繁殖的标志;实验也证明了红斑顠体虫的爆发性繁殖不会产生大量啃食生物膜的现象;用SPSS做多元线性回归分析,得出红斑顠体虫的最大种群密度与总氮的释放显著相关。  相似文献   

2.
活性污泥-生物膜复合工艺在春夏之交常发生红斑顠体虫的爆发性繁殖,使系统性能恶化。用螺旋藻和活性污泥在光照培养箱中对红斑顠体虫进行培养,通过指数拟合,得出红斑顠体虫的指数增长率和倍增时间。用螺旋藻和活性污泥单独培养,红斑顠体虫倍增时间分别可达1.44 d和2.04 d。用活性污泥和螺旋藻对红斑顠体虫进行联合培养,发现在污泥浓度为132 mg/L时,叶绿素a浓度为85.9 mg/m3时,其倍增时间为1.14 d。可见在叶绿素a、活性污泥以及两者协同影响下,都可促进红斑顠体虫的生长。  相似文献   

3.
以活性污泥为研究对象,研究了污泥中红斑顠体虫的生长情况以及红斑顠体虫对污泥减量的影响.结果表明:(1)红斑顠体虫的培养温度应该保持在20℃以上.在低污泥负荷(F/M) (<0.4 mg/(mg·d))下,红斑顠体虫均能大量出现.(2)当温度大于20℃、红斑顠体虫处于生长期的活性污泥浓度(MLSS)>3.0 g/L时,红...  相似文献   

4.
活性污泥与生物膜复合工艺处理石化废水的研究   总被引:1,自引:0,他引:1  
实验研究了活性污泥与生物膜复合工艺(HP)对石化废水的处理效果,并与活性污泥工艺(ASP)进行对比研究.结果表明,HP对石化废水中COD的去除效果略好于ASP,而对NH3-N的去除效果明显优于ASP.另外,两种工艺对硫化物和油的去除效果类似.提高进水负荷时,HP表现出较强的耐冲击负荷能力.以2L/h连续运行时,石化废水...  相似文献   

5.
利用活性污泥-生物膜一体化反应器处理含苯酚废水,考察了反应器对苯酚和COD的处理效果以及反应器运行中生物膜干质量(SS)、挥发性干质量(VSS)、活性生物量、脱氢酶活性(DHA)、胞外聚合物(EPS)的变化,探究了生物膜特性与废水处理效果之间的关系。结果表明:在进水苯酚质量浓度由50 mg·L−1逐步提高到500 mg·L−1的过程中,苯酚和COD去除率均呈先降后升的趋势;当进水苯酚质量浓度为250 mg·L−1时,反应器能适应苯酚冲击,苯酚和COD去除率分别稳定在97%和60%以上;当进水苯酚质量浓度为500 mg·L−1时,苯酚去除率可达到99%,同期SS、VSS、活性生物量及DHA(22.03~57.07 mg·g−1)的变化亦反映出生物膜性能的提升,说明反应器对苯酚质量浓度变化的适应能力较强。此外,EPS质量分数为42.99~310.51 mg·g−1,蛋白质(PN)与多糖(PS)的质量比为0.67~1.39,且当初始苯酚质量浓度为250 mg·L−1时,PN/PS值最高,EPS亲水性低,生物膜可高效降解苯酚。以上研究结果表明,逐渐提高进水苯酚质量浓度能有效提高活性污泥-生物膜一体化反应器对苯酚的适应性和降解率。  相似文献   

6.
设计一套流化床生物膜(MBBR)—A/O活性污泥耦合装置处理城镇污水,考察了污泥回流对耦合工艺处理效率的影响,研究了系统中生物膜相和悬浮相微生物在有机物降解和脱氮反应中的活性差异。实验结果表明,当系统进水COD在200~400mg/L,进水氨氮在8.0~32.0mg/L,污泥回流比为1/8时,水力停留时间为12.4h,系统COD去除率平均值达81.4%,TN去除率平均值达70.6%,系统对较难降解城镇污水的处理具有明显的技术优势。污泥回流降低了生物膜相微生物的活性,而提高了悬浮相微生物活性,但生物膜相微生物活性速率仍高于悬浮相微生物活性。与传统活性污泥工艺相比,MBBR—A/O活性污泥耦合工艺将高活性生物膜引入,使悬浮污泥浓度极大降低,有助于减少污泥回流能耗与处理成本,具有明显应用价值。  相似文献   

7.
17a-乙炔雌二醇(EE2)属于人工合成雌激素,是活性较强的环境内分泌干扰物之一.在污水处理厂中,EE2主要是通过活性污泥的生物降解作用得以去除.影响活性污泥对EE2生物降解的因素很多,温度是影响因素之一.分别采用一级缺氧/好氧(A/O)模式和三级缺氧/好氧(A/O/A/O/A/O)模式运行的SBR工艺.考察了温度对EE2去除的影响.试验发现,随着温度的升高,EE2在水相和泥相中的去除率明显增加,其中在30℃时EE2去除率达到最大,2种运行模式下水相中EE2去除率均达到了96%以上;泥相是EE2生物降解的主要场所;EE2生物降解主要发生在好氧阶段,缺氧阶段EE2生物降解效果不明显.  相似文献   

8.
为了丰富活性炭再生方法,并拓宽脉冲放电等离子体技术的应用范围,研究建立了气液混合的脉冲放电等离子体体系,将其用于吸附酸性橙II (AO7)饱和活性炭的再生。通过实验,考察了气液混合方式、脉冲电压、脉冲频率和电极间距等关键参数对活性炭再生效果的影响规律,进而对该再生体系进行优化。研究结果表明,气液分离式的气液混合方式较利于该脉冲放电等离子体体系中活性炭的优化;在一定范围内提高脉冲电压,可以提高其中活性炭的再生效果;高的脉冲频率下活性炭再生效果好;气液混合脉冲放电等离子体体系中适宜于活性炭再生的电极间距为20 mm。  相似文献   

9.
微波辐照载甲苯活性炭升温研究   总被引:1,自引:1,他引:0  
研究了微波功率、活性炭量和载气速度3个因素对载甲苯活性炭在微波场中升温行为的影响,并应用数值模拟,发现活性炭在微波场中的升温可以分为2个阶段,其中第1阶段升温较快,可以用线性关系式描述,而第2个阶段升温较缓慢,可以用对数函数描述.  相似文献   

10.
温度和污泥浓度对碱性条件下剩余污泥水解酸化的影响   总被引:3,自引:0,他引:3  
挥发性脂肪酸(VFAs)是脱氮除磷过程中易于利用的碳源。剩余污泥在碱性条件下发酵能产生大量的VFAs,而温度和污泥浓度是影响剩余污泥发酵的两个重要因素,为此考察了厌氧环境,温度15℃和35℃,pH为10的条件下,剩余污泥挥发性悬浮污泥浓度(VSS为1.708~11.049 g/L)对水解酸化的影响,为实现剩余污泥的资源化提供理论依据。研究得出如下结论:污泥浓度对剩余污泥溶解性化学需氧量(SCOD)溶出率影响不大。低污泥浓度和高污泥浓度均不利于剩余污泥产酸,最佳产酸的污泥浓度为8.540 g/L。各污泥浓度条件下产生的6种挥发性有机酸中乙酸的比例总是最大,且低污泥浓度条件下乙酸的百分含量要高于高污泥浓度条件下。温度对高污泥浓度条件下污泥的最大SCOD溶出量影响较大,而对低污泥浓度条件下污泥最大的产酸量影响较大。无论15℃还是35℃,中等污泥浓度对氨氮的释放量影响不大,35℃条件下污泥浓度对正磷酸盐的释放要比15℃条件下大。  相似文献   

11.
生物净化技术在低浓度磷化氢尾气处理方面有良好的应用前景,但磷化氢生物代谢的影响因素、特性等问题未有系统阐述。在生物法处理难溶有毒气体的基础上采用活性污泥体系净化磷化氢气体,探讨碳源、pH等因素对磷化氢生物降解特性的影响。磷化氢生物净化过程中,甲醇为碳源时微生物生长最好,最优C/N为15:1,适宜的pH为6.5~7.5。进口气中PH3浓度高于20 mg·m-3时,微生物的生长开始受到抑制,但生物体内的酶活性明显增强,表明微生物具有抵抗磷化氢毒害作用的特性。活性污泥体系中,PH3去除率最高可达78.0%,生物降解效果明显。  相似文献   

12.
温度及外加碳源对生物脱氮除磷过程的影响   总被引:3,自引:0,他引:3  
针对污水处理厂普遍面临的进水碳源不足及冬季低温时出水氮磷不能稳定达标的问题,研究了温度(21、15和10℃)和外加碳源(乙酸)对活性污泥缺氧条件下反硝化及释磷过程的影响。结果表明,在缺氧条件下投加乙酸,释磷与反硝化反应可同时进行,且乙酸投量的增加仅延长快速碳源反硝化阶段及缺氧释磷阶段的反应时间;温度降低为15℃和10℃时,快速碳源反硝化阶段反硝化速率及缺氧释磷速率较21℃分别降低了约29.2%、42.2%和26.1%、32.3%。当硝态氮目标去除量与磷酸盐目标释放量之比超过5时,乙酸的最优投量以满足反硝化要求为准,计算得出21、15和10℃时常州某城镇污水处理厂乙酸最优投加量计算值约为30、39和46 mg/L。  相似文献   

13.
将全细胞脂肪酶(菌)以产脂肪酶微生物的形式直接投加到SBR内,与投加野生型酵母菌及空白对照进行比较,研究其对活性污泥性能及含油脂废水处理效果的影响。结果表明,在15~20℃,pH 6.5~7.5,进水油脂浓度2 000 mg/L的条件下,投加一定量全细胞脂肪酶(菌)的SBR系统间歇处理4 d,活性污泥增殖速度加快,是投加野生型酵母菌的1.3倍。静置30 min时活性污泥SV达到45%,SVI为151,MLSS最高可达2 965 mg/L左右,絮凝时间缩短且无污泥膨胀现象。投加全细胞脂肪酶(菌)的SBR系统中,油脂去除率为86.5%,COD去除率为79.5%,与投加野生型酵母菌的SBR系统相比去除率提高了1.3倍。说明投加全细胞脂肪酶(菌)后活性污泥性能增强,油脂废水处理效率提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号