首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change poses a major threat to human security and poverty in Africa. In Africa, where livelihoods are mainly based on climate-dependent resources and environment, the effect of climate change will be disproportionate and severe. Moreover, Africa's capacity to adapt to and cope with the adverse effects of climate variability is generally weak. This article discusses how climate change affects human security in Africa. It also assesses the policy options available to policymakers in terms of mitigation and adaptation to climate change to reduce vulnerability and human insecurity in Africa.  相似文献   

2.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

3.
Abstract: Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species’ ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate‐change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub‐Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub‐Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate‐change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.  相似文献   

4.
Understanding how vulnerable forest ecosystems are to climate change is a key requirement if sustainable forest management is to be achieved. Modelling the response of species in their regeneration niche to phenological and biophysical processes that are directly influenced by climate is one method for achieving this understanding. A model was developed to investigate species resilience and vulnerability to climate change within its fundamental-regeneration niche. The utility of the developed model, tree and climate assessment (TACA), was tested within the interior Douglas-fir ecosystem in south-central British Columbia. TACA modelled the current potential tree species composition of the ecosystem with high accuracy and modelled significant responses amongst tree species to climate change. The response of individual species suggests that the studied ecosystem could transition to a new ecosystem over the next 100 years. TACA showed that it can be an effective tool for identifying species resilience and vulnerability to changes in climate within the most sensitive stage of development, the regeneration phase. The TACA model was able to identify the degree of change in phenological and biophysical variables that control tree establishment, growth and persistence. The response to changes in one or more of these variables resulted in changes in the climatic suitability of the ecosystem for species and enabled a measure of vulnerability to be quantified. TACA could be useful to forest managers as a decision support tool for adaptation actions and by researchers interested in modelling stand dynamics under climate change.  相似文献   

5.
Abstract: The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science–policy interface. Similarly, boundary organizations—organizations or institutions that bridge different scales or mediate the relationship between science and policy—could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.  相似文献   

6.
7.
Vietnam’s coastal zone provides a diverse range of natural resources and favourable conditions for social and economic development. However, its coastal ecosystems are highly vulnerable, due to several natural coastal hazards, over-exploitation and other human activities. In spite of diverse interventions, Vietnam’s coastal zone continues to experience significant damage from floods, erosion and typhoons. These hazards are being intensified by climate change and associated rising sea levels. This paper assesses the potential vulnerability of Vietnam’s coast to climate change and discusses possible adaptation policies and plan to reduce the impacts. GIS analysis was used for the assessment of coastal vulnerability. Related literature was reviewed to develop detailed understanding of coastal adaptation to climate change. Adaptation policies and plans were appraised to identify potential coastal adaptation policies and plans that could be adapted by Vietnam. It was identified that vulnerability of the coastal zone of Vietnam could not be attributed only to climatic factors, but also to the physical condition of the coastline. Much of Vietnam’s coastline, particularly, areas around the Red River delta and the Mekong River have elevations below 1 m. These coastlines are largely developed and serve as economic centres of the country, which makes the coast more vulnerable to climate change and the rising sea level. The paper concluded that a non-structural approach (coastal buffer zones, building houses on stilts, storm warning systems, growing of flood-resistant crops and elevated storm shelters with medicine and food storage) could be used by Vietnam to adapt her low-lying coastline around the two deltas to climate change as this strategy enables vulnerable areas to be occupied for longer before eventual retreat. However, for these policies to be successful, it should be planned, implemented well in advance, monitored and evaluated over time.  相似文献   

8.
Mountains are among the natural systems most affected by climate change, and mountain mammals are considered particularly imperiled, given their high degree of specialization to narrow tolerance bands of environmental conditions. Climate change mitigation policies, such as the Paris Agreement, are essential to stem climate change impacts on natural systems. But how significant is the Paris Agreement to the survival of mountain mammals? We investigated how alternative emission scenarios may determine change in the realized climatic niche of mountain carnivores and ungulates in 2050. We based our predictions of future change in species niches based on how species have responded to past environmental changes, focusing on the probabilities of niche shrink and niche stability. We found that achieving the Paris Agreement's commitments would substantially reduce climate instability for mountain species. Specifically, limiting global warming to below 1.5°C would reduce the probability of niche shrinkage by 4% compared with a high-emission scenario. Globally, carnivores showed greater niche shrinkage than ungulates, whereas ungulates were more likely to shift their niches (i.e., face a level of climate change that allows adaptation). Twenty-three species threatened by climate change according to the IUCN Red List had greater niche contraction than other species we analyzed (3% higher on average). We therefore argue that climate mitigation policies must be coupled with rapid species-specific conservation intervention and sustainable land-use policies to avoid high risk of loss of already vulnerable species.  相似文献   

9.
农业是气候变化最敏感的领域之一,气候变化将对农作物产量产生巨大影响.探讨气候变化对干旱区哈密瓜(Cucumis melo L.)生长和产量的影响,明确关键影响气象因子,可为合理有效利用气候资源和防灾减灾提供科学依据.选取1981—2019年哈密瓜生长年气候因子、生长季内气象要素和1999—2019年发育期及产量资料,分...  相似文献   

10.
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate‐change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate‐change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación  相似文献   

11.
The goal of this study was to set-up the basis for climate change adaptation of water resources management policies in Seyhan River basin. The first priority was to identify the balances between water resources and water users with respect to existing and planned projects. In this respect various aspects of Seyhan basin were evaluated, including evaluation of existing water resources, determination of water demand of existing and planned projects, and water resources supply-demand characteristics. The global climate change model was downscaled to the basin scale, the results were associated with hydrometeorological monitoring network and finally the impact of climate change on surface water resources and demands were determined for specific projection years. Water resources management scenarios were developed to evaluate adaptation alternatives to climate change scenarios at the basin level. It was determined that even though there was no water stress in Seyhan basin in 2010, many parts of the basin were expected to suffer significant shortages over the coming years.  相似文献   

12.
13.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

14.
天津植被指数对气候因子响应的敏感性分析   总被引:1,自引:0,他引:1  
李明财  郭军 《生态环境》2010,19(8):1778-1782
探索植被覆盖与气候变化相互关系是全球环境变化研究领域的重要内容之一,研究特定区域植被对气候变化响应特征对植被重建和生态恢复具有重要意义。然而,目前植被对气候因子响应的敏感性研究还十分缺乏。利用1982—2003年8km×8km的NASA/GIMMS半月合成的归一化植被指数(NDVI)和同期气候数据,研究了天津地区NDVI对气候因子响应特征及其敏感性。结果表明:植被NDVI与气温及降水均有显著非线性正相关关系(P〈0.0001);在半月平均气温低于0℃时,植被NDVI与气温没有显著性相关,而从气温高于0℃,一直到高于22℃,NDVI与气温的关系均达到显著性水平(P〈0.05),但相关性是逐渐降低的;当半月平均气温高于23℃及以上时,NDVI与气温没有显著的相关关系(P〉0.05);当半月降水量〉0mm时,NDVI与降水存在极显著正相关关系(P〈0.0001),随着降水量的增加,相关关系减弱,在降水量大于50mm时,NDVI与降水没有显著相关关系(P〉0.05);研究结果证实,天津地区植被指数对气候的响应存有明显的非线性特征,在低温和低降水量条件下植被的响应更为敏感,23℃和50mm分别是该地区影响植被生长的气温和降水阈值。结合1982—2003年逐半月气候条件分析发现,气温的影响主要是春、秋两季,而降水的影响主要表现在春、秋及夏初。  相似文献   

15.
16.
Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.  相似文献   

17.
On a global scale climatic changes driven by human activities are typically projected to increase from 1° C to 5° C per 100 years a rate of change that is an order of magnitude greater than that typically experienced naturally. Such a potentially dramatic change in climate could easily cause dramatic biological responses including extinction. Species show a wide range of responses to climate and consequently the response of different species of plants and animals to climatic change will be quite variable. This implies a likelihood for a disassembling of natural communities and for transient, nonequivalent restructuring of habitats as climatic change unfolds. Validated models that help forecast these events are needed to aid scientists in better understanding the ecological ramifications of global climatic change. Also, and perhaps more important for conservation biology, such validated models can help provide probabilities for the occurrence of these events, which will allow policy makers to make better, informed decisions. Typically, the study plots of most ecological field work are telecommunications, while the smallest resolved scales in global climatic models are about 500 × 500 km. Computer limitations preclude significant reduction in scales of climatic models. Consequently, more multi-species ecological studies are needed over broad geographic and long temporal scales. We provide an example of large-scale ecological response studies, namely the case of wintering North American birds. We also provide an example of attempts to translate results of large-scale climatic models (at a 500 × 500 km scale) to a mesoscale (50 × 50 km). Participation of climatologists with ecologists at early stages in research planning can help bridge the scale mismatch between climatic and ecological measurement, and provide more reliable estimates of community responses to century-long, time-evolving patterns of climatic change. We are convinced that many more such interdisciplinary research attempts are urgently needed if the scientific community is to produce information useful to the development of conservation strategies. Such strategies might help to mitigate potential negative consequences of global climatic changes before they manifest themselves irreversibly in nature.  相似文献   

18.
Rydgren K  Økland RH  Picó FX  de Kroon H 《Ecology》2007,88(9):2320-2329
Bryophytes have increased in abundance in northern regions, and climate changes have been proposed to account for this change. However, changes in the population dynamics of microtine rodents may also contribute to changes in bryophyte abundance. New evidence indicates a tendency for microtine rodent population oscillations to change from periodicity of 3-5 years to become irregular or acyclic. The impact on ecosystem functioning is potentially great. We study the impact of variation in microtine rodent population characteristics, such as cycle length and amplitude, on the population dynamics of the boreal, clonal moss Hylocomium splendens. We use experimental and observational demographic data to construct 127 scenarios representing all combinations of disturbance type (gap formation and/or clipping), period (cyclic with 4, 6, 12, or 24 years between rodent peaks; or acyclic with constant or stochastically varying annual disturbance severity) and disturbance severity (fraction of individuals affected by disturbance in each year relative to the maximum disturbance carried out in the field experiment; seven levels). Population data collected in the field during 13 years were used as a baseline scenario. By subjecting all scenarios to stochastic matrix modeling, we demonstrate considerable impact of microtine rodent on the population dynamics of H. splendens, most notably when rodent populations fluctuate with short periods and high peak disturbance severities. Under the same average disturbance severity, H. splendens population growth rates are highest in acyclic scenarios and are progressively reduced with increasing peak disturbance severities (i.e., with increasing period). Stochastic elasticity analyses show that in less variable environments mature segment survival contributes more to the population growth rate, while in more variable environments the regeneration pathway (branching of older parts of the plant) plays a stronger role, inevitably leading to lower population fitness. Our results support the hypothesis that breakdown of cyclic rodent population dynamics accentuates increase in the abundance of H. splendens and other large bryophytes in boreal forests in Norway, observed empirically in recent years and primarily ascribed to climatic change.  相似文献   

19.
Some case studies are described to show progress, potentials and limits of present day climate impact research. The examples given cover impacts on Lakes worldwide, Europe's cost lines, landscapes in the USA, South America and in Germany and on the people living there. Forecasts using not only future scenarios of climatic but of socieal change as well are rare. It is rather state of the art to use future climate scenarios to analyse the vulnerability of today's regional structures. The objective is to identify weak points and measures to eliminate them. Mostly the analysis is based on the consideration of global climate scenarios on one hand and regionally specific economic patterns on the other. But now regionalized climate models and scenarios are used more and more to describe climate change. In most impact studies more accurate and concrete results are obtained and this is demonstrated in the Brandenburg study.  相似文献   

20.
Bonebrake TC  Deutsch CA 《Ecology》2012,93(3):449-455
Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号