首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering that water is becoming progressively scarce, monitoring water quality of rivers is a subject of ongoing concern and research. It is very intricate to accurately express water quality as water quantity due to the various variables influencing it. A water quality index which integrates several variables in a specific value may be used as a management tool in water quality assessment. Moreover, this index may facilitate communication with the public and decision makers. The main objectives of this research project are to evaluate the water quality index along a recreational section of a relatively small Mediterranean river in Southern Lebanon and to characterize the spatial and temporal variability. Accordingly, an assessment was conducted at the end of the dry season for a period of 5 years from 2005 to 2009. The estimated water quality index classified the average water quality over a 5-year period at the various sites as good. Results revealed that water quality of the Damour River is generally affected by the anthropogenic activities taking place along its watershed. The best quality was found in the upper sites and the worst at the estuary. The presence of fecal coliform bacteria in very high levels may indicate potential health risks to swimmers. This study can be used to support the evaluation of management, regulatory, and monitoring decisions.  相似文献   

2.
This study investigates the spatial water quality pattern of seven stations located along the main Langat River. Environmetric methods, namely, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA), and the factor analysis (FA), were used to study the spatial variations of the most significant water quality variables and to determine the origin of pollution sources. Twenty-three water quality parameters were initially selected and analyzed. Three spatial clusters were formed based on HACA. These clusters are designated as downstream of Langat river, middle stream of Langat river, and upstream of Langat River regions. Forward and backward stepwise DA managed to discriminate six and seven water quality variables, respectively, from the original 23 variables. PCA and FA (varimax functionality) were used to investigate the origin of each water quality variable due to land use activities based on the three clustered regions. Seven principal components (PCs) were obtained with 81% total variation for the high-pollution source (HPS) region, while six PCs with 71% and 79% total variances were obtained for the moderate-pollution source (MPS) and low-pollution source (LPS) regions, respectively. The pollution sources for the HPS and MPS are of anthropogenic sources (industrial, municipal waste, and agricultural runoff). For the LPS region, the domestic and agricultural runoffs are the main sources of pollution. From this study, we can conclude that the application of environmetric methods can reveal meaningful information on the spatial variability of a large and complex river water quality data.  相似文献   

3.
In this study, surface water quality of the Ceyhan River basin were assessed and examined with 13 physico-chemical parameters in 31 stations in 3 months during the period of 2005. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied stations. Nutrients, Cl??? and Na?+? affected mostly to the stations of Erkenez 2, S?r 2, and S?r 3 in the ordination diagram of correspondence analysis. Three factors were extracted by principal component analysis, which explains 79.14% of the total variation. The first factor (PC1) captures variables of EC, DO, NO $_{2}^{\; -}$ , PO $_{4}^{\; \equiv }$ , Cl???, SO $_{4}^{\; =}$ , Na?+?, and Ca?+?+?. The second factor (PC2) is significantly related to pH, NH $_{3}^{\; -}$ , and Mg?+?+?, while water temperature (T) and NO $_{3}^{\; -}$ accounted for the greatest loading for factor 3 (PC3). The stations were divided into three groups for PC1, two groups for PC2, and three groups for PC3 by hierarchical cluster analysis. The stations in the vicinity of cities presented low dissolved oxygen and high concentration of physico-chemical parameter levels. The stations of Erkenez 2, S?r 2, S?r 3, and Aksu 4 located near the city of Kahramanmara? were characterized by an extremely high pollution due to discharge of wastewater from industry and domestic. P?narba?? and Elbistan stations were also influenced by household wastewater of the city of Elbistan. According to criteria of Turkish Water Pollution Control Regulation, Erkenez 2, S?r 2, and S?r 3 stations have high polluted water. This study suggests that it is urgent to control point pollutions, and all wastewater should be purified before discharge to the Ceyhan River basin.  相似文献   

4.
The European Water Framework Directive (WFD) is the overall driver for this environmental study and currently requires the identification of patterns and sources of pollution (monitoring) to support objective ecological sound decision making and specific measures to enhance river water quality (modelling). The purpose of this paper is to demonstrate in a case study the interrelationship between (1) hydrologic and water quality monitoring data for river basin characterization and (2) modelling applications to assess resources management alternatives. The study deals with monitoring assessment and modelling of river water quality data of the main stem Saale River and its principal tributaries. For a period of 6 years the data, which was sampled by Environmental Agencies of the German states of Thuringia, Saxony and Saxony-Anhalt, was investigated to assess sources and indicators of pollution. In addition to the assessment a modelling exercise of the routing of different pollutants was carried out in the lower part of the test basin. The modelling is a tool to facilitate the evaluation of alternative measures to reduce contaminant loadings and improve ecological status of a water body as required by WFD. The transport of suspended solids, salts and heavy metals was modelled along a selected Saale reach under strong anthropogenic influence in terms of contaminants and river morphology between the city of Halle and the confluence with the Elbe River. The simulations were carried out with the model WASP5 which is a dynamic flood-routing and water quality model package developed by the US Environmental Protection Agency.  相似文献   

5.
Stream water chemistry were analyzed across Vatinsky Egan River Catchment (West Siberia). The objective of the study is to reveal the spatial and seasonal variations of the water quality and to assess the anthropogenic chemical inputs into the river system. Stream chemistry were monitored in 24 sampling sites for a period extended from January 2002 to December 2005. Spatial distribution of constituents in the Vatinsky Egan River basin indicated pollution from non-point sources associated with oil development. Data revealed that ion concentrations of river waters are usually negatively correlated with stream discharge. The major spatial variations of the hydrochemistry are related to the salinity. Chloride exhibited wide and high concentration range. A comparison with another rivers of West Siberia reveals that Vatinsky Egan River is the most saline and regional impacts further out in the watershed. The salinity of the river water increases substantially as it crosses Samotlor oil field. Many Cl(-) concentrations in the middle and lower parts of the catchment exceed the world average river values by one or more orders of magnitude. For 38% of sampling events, total petroleum hydrocarbons (TPH) concentrations were above the recommended water quality standards.  相似文献   

6.
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.  相似文献   

7.
Tayrona National Natural Park (TNNP) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region also experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. However, the spatial and temporal effects on water quality parameters relevant for coral reef functioning have not been investigated. Therefore, inorganic nutrient, chlorophyll a, and particulate organic carbon (POC) concentrations along with biological O2 demand (BOD), pH, and water clarity directly above local coral reefs (~10 m water depth) were monitored for 25 months in four bays along a distance gradient (12–20 km) to Santa Marta in the southwest and to the first river mouth (17–27 km) in the east. This is by far the most comprehensive coral reefs water quality dataset for the region. Findings revealed that particularly during non-upwelling, chlorophyll a and POC concentrations along with BOD significantly increased with decreasing distance to the rivers in the east, suggesting that the observed spatial water quality decline was triggered by riverine runoff and not by the countercurrent-located Santa Marta. Nitrate, nitrite, and chlorophyll a concentrations significantly increased during upwelling, while pH and water clarity decreased. Generally, water quality in TNNP was close to oligotrophic conditions adequate for coral reef growth during non-upwelling, but exceeded critical threshold values during upwelling and in relation to riverine discharge.  相似文献   

8.
In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.  相似文献   

9.
Concentrations in surface waters (including particulate phase) of the River Chenab ranged from 27-1100 ng L(-1) and 25-1200 ng L(-1) for OCPs and 7.7-110 ng L(-1) and 13-99 ng L(-1) for PCBs during summer and winter, respectively from 2007-2009. DDTs exhibited the highest concentration, followed by HCHs > chlordane > ∑(24)PCBs > ∑other OCPs. Different indicative ratios for organochlorines suggest that current use, long range transport and also past application of these chemicals contribute to the total burden. Statistical analysis highlighted agricultural and industrial activities and municipal waste disposal as main sources of OCPs and PCBs in the riverine ecosystem of the River Chenab. Risk Quotients (RQ(CCCs)) > 10 for DDTs and PCBs levels in collected water samples from the River Chenab suggest that risk from DDTs and PCBs is moderate to severe and fluxes calculated for OCPs and PCBs from the River Chenab to the Indus River were 7.5 tons per year and 1.0 tons per year, respectively.  相似文献   

10.
In this study, we assess the drinking water quality of Jhelum city. Two hundred and ninety-two drinking water samples were randomly collected in the study area. These samples were chemically analyzed for three key toxic (in excess) elements such as pH, total dissolved solids (TDS), and calcium. Geostatistical techniques such as variogram and kriging were used to investigate the spatial variations of these minerals across the city. The spatial structure for each element was found to be anisotropic, and thus, anisotropic variograms were used. The kriging predictions revealed significant concentrations of the above-stated elements at some locations in the study area. While comparing with the World Health Organization, United States Environmental Protection Agency, and Pakistan Environmental Protection Agency standards, the water samples were found to be unsatisfactory for drinking. We conclude that the drinking water in this region is of poor quality and needs proper treatment to make it palatable.  相似文献   

11.
The application of different multivariate statistical approaches for the interpretation of a complex data matrix obtained during the period 2004-2005 from Uluabat Lake surface water is presented in this study. The dataset consists of the analytical results of a 1 year-survey conducted in 12 sampling stations in the Lake. Twelve parameters (T, pH, DO, [Formula: see text], NH(4)-N, NO(2)-N, NO(3)-N, [Formula: see text], BOD, COD, TC, FC) were monitored in the sampling sites on a monthly basis (except December 2004, January and February 2005, a total of 1,296 observations). The dataset was treated using cluster analysis, principle component analysis and factor analysis on principle components. Cluster analysis revealed two different groups of similarities between the sampling sites, reflecting different physicochemical properties and pollution levels in the studied water system. Three latent factors were identified as responsible for the data structure, explaining 77.35% of total variance in the dataset. The first factor called the microbiological factor explained 32.34% of the total variance. The second factor named the organic-nutrient factors explained 25.46% and the third factor called physicochemical factors explained 19.54% of the variances, respectively.  相似文献   

12.
River water quality and pollution sources in the Pearl River Delta, China   总被引:1,自引:0,他引:1  
Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.  相似文献   

13.
Bisphenol A (BPA) is a commonly used monomer in various products including bottled water. Numerous studies have reported endocrine adverse effects and neoplasia associated with BPA exposure in animals. However, considerable discrepancies exist among these studies with respect to both the nature of the toxic effects and the threshold dose. In Lebanon, 19-L polycarbonate (PC) bottles of drinking water are widely used in urban areas. The present study aims at assessing BPA human exposure and associated health risks from drinking water in Lebanese. A total of 22 bottled water sources, packaged in PC, were identified from licensed and non-licensed sources. Water samples were analyzed following exposure to sunlight for 72 h. BPA in water was quantified by HPLC, and other potential organic pollutants were screened by GC/MS. Fifty-nine percent of samples showed BPA levels above detection limits (>0.05 ng/mL). The median BPA level was 0.1 ng/mL (range 0.05 to 1.37 ng/mL). The mean BPA level for the total number of samples was 0.169 ng/mL (±0.280). A higher mean BPA level was found in water from licensed companies compared to non-licensed sources, however, not statistically significant. Screening showed the presence of dibutyl-phthalate and dioctyl-phthalate in only two samples. Endocrine disruptors (EDR) are ubiquitous contaminants in bottled water in Lebanon with potential health risk implications. Although estimated exposure levels are below the reference dose (RfD), further studies are needed to quantitate exposure from various sources and to investigate EDR contribution to existing epidemics in the country.  相似文献   

14.
This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, “good water chemical status” can probably only be achieved by improving the management of sewage effluents during low-flow periods.  相似文献   

15.
16.
The increased demand on water resources in Lebanon as a resultof: progressive urbanization, socio-economic growth, agriculturalactivities and development of industries is, according to the national authorities, a major critical factor by the year 2010.Political difficulties in earlier years imply a dearth of pertinent data. The objective of this study was to evaluate water quality of the Qaraaoun Reservoir of the Litani River andassess its feasibility for multi-purpose usage as one of the solutions to the aggravated water problems in Lebanon. Sampleswere collected from 18 sampling sites at several dates duringthe dry season. Parameters analysed were, pH, electrical conductivity, TDS, turbidity, alkalinity, Ca, Mg, TH, Cl-, SO4 2-, NH3, NO3 -,PO4 3-, Fe, Al, Na, Zn, Cr, Cu and As. The reported data were in compliancewith WHO guidelines, USEPA regulation and EEC directives. Statistical analysis of the data defined three distinct environmental zones and water quality in the central, main zone satisfied most criteria. It is concluded that the reservoir water is fit for multipurpose uses, namely, drinking, domestic,recreational activities, irrigation, fisheries, livestock and industrial, and should be properly managed accordingly.  相似文献   

17.
监测和评价浑江水质的底栖动物指标体系研究   总被引:6,自引:1,他引:6  
在浑江六个断面采集到底栖动物(4门、6纲、12目、34科、57属)84种,列出了相关名录。通过运用描述对比法、指示生物法、生物指数法对浑江采样水体的水质进行了底栖动物学综合评价。在此基础上建立了监测和评价浑江水质的底栖动物指标体系,并探讨了河流水体污染生态学中的底栖动物与水质状况的相关性和对水质状况的指示性及利用该体系监测评价浑江水质的实用性。  相似文献   

18.
WPI指数在地表水环境质量评价中的运用   总被引:3,自引:1,他引:3  
在地表水环境质量评价中提出了 WPI指数 ,并对其使用方法作了详细说明 ,提供了计算 API指数和判定水质类别的 wpix( data,bh,lx)函数  相似文献   

19.
In order to understand the water quality and the genotoxicity of various surfaces in the Guangzhou section of the Pearl River during January to December of 2008, we investigated and studied the current water situation of the surface microlayer (SML) and the subsurface water (SSW) in Guanzhou section (Zhongda Dock and Yuzhu Dock) of the Pearl River by chemical analysis and biological monitoring method (Vicia faba micronucleus test). The results showed that during these months concentrations of the indexes of the two docks water such as total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) exceeded the national III level of surface water quality, and the indexes of SML were much higher than the ones of SSW (P?< 0.05), and the exceeding rate of TN, TP of SML was 100%. According to the eutrophic evaluation standard, the water bodies of SML and SSW in the two docks were in a eutrophication during these months. The eutrophication and pollution of SML was more serious, and the highest index of eutrophication (E value) was up to 81.9, which also had obvious difference with COD and TP (P?< 0.05). The water of SML in the two docks enriched to N, P, and chlorophyll a (Chl. a) seriously, and the enrichment factor of SML in Zhongda Dock to N, P, and Chl. a was 0.71 ?? 2.78, 0.98 ?? 1.18, and 0.49 ?? 13.99, respectively, and the one in the Yuzhu Dock was 1.09 ?? 1.52, 1 ?? 1.14, and 0.72 ?? 4.07, respectively. Through inspecting the water genotoxicity of various layers by V. faba micronucleus test, we could know that the average annual MCN?? of SML and SSW in the two docks was 6.09??, 5.53??, 5.57??, and 5.249??, respectively. In general, the above value of SML was a little higher than the one of SSW, but there was not a remarkable difference (P?> 0.05). This research shows that the water quality in a medium to heavy eutrophication in the Guangzhou section of Pearl River belongs to national III ?? IV level, and SML has the capability of enrichment to the pollutants such as N and P and induces the increase of micronucleus rate of V. faba tip cell. The study also indicates that there may be genotoxicity matters such as N, P in water body.  相似文献   

20.
Water quality has degraded dramatically in Wen-Rui Tang River watershed, Zhejiang, China, especially due to rapid economic development since 1995. This paper aims to assess spatial and temporal variations of the main pollutants (NH??-N, TN, BOD(5), COD(Mn), DO) of water quality in Wen-Rui Tang River watershed, using the geographic information system, cluster analysis (CA) and principal component analysis (PCA). Results showed that concentrations of BOD(5), COD(Mn), NH??-N, and TN were significantly higher in tertiary rivers than in primary and secondary rivers. From April 2006 to March 2007, the concentrations of NH? ?-N (2.25-57.9 mg/L) and TN (3.78-70.4 mg/L) in all samples exceeded Type V national water quality standards (≥2 mg/L), while 5.3% of all COD(Mn) (1.83-27.5 mg/L) and 33.6% of all BOD(5) (0.34-50.4 mg/L) samples exceeded Type V national water quality standards (COD(Mn)?≥ 15 mg/L, BOD(5)?≥ 10 mg/L). Monthly changes of pollutant concentrations did not show a clear pattern, but correlation analysis indicated that NH??-N and TN in tertiary rivers had a significant negative correlation with 5-day cumulative rainfall and monthly rainfall, while there were no significant correlations in primary and secondary rivers. The results of CA and spatial analysis showed that the northern part of Wen-Rui Tang River watershed was the most seriously polluted. This region is characterized by the high population density and industrial and commercial activities. The PCA and spatial analysis indicated that the degraded water quality is caused by anthropogenic activities and poor wastewater management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号