首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial dynamics of species are the result of complex interactions between density-independent and density-dependent sources of variability. Disentangling these two sources of variability has challenged ecologists working in both terrestrial and aquatic ecosystems. Using a novel spatially explicit statistical model, we tested for the presence of density-independent and density-dependent habitat selection in yellowfin sole (Limanda aspera) in the eastern Bering Sea. We found specificities in the density-dependent processes operating across ontogeny and particularly with gender. Density-dependent habitat expansion occurred primarily in females, and to a lesser degree in males. These patterns were especially evident in adult stages, while juvenile stages of both sexes exhibited a mix of different dynamics. Association of yellowfin sole with substrate type also varied by sex and to a lesser degree with size, with large females distributed over a wider range of substrates than males. Moreover, yellowfin sole expanded northward as cold subsurface waters retracted in summer, suggesting high sensitivity to arctic warming. Our findings illustrate how marginal habitats can play an important role in buffering density-dependent habitat expansion, with direct implications for resource management. Our spatially explicit modeling approach is effective in evaluating density-dependent spatial dynamics, and can easily be used to test similar hypotheses from a variety of aquatic and terrestrial ecosystems.  相似文献   

2.
Diversity in guilds of primary producers enhances temporal stability in provision of organic matter to consumers. In the Antarctic ecosystem, where temporal variability in phytoplankton production is high, sea ice contains a diatom and microbial community (SIMCO) that represents a pool of organic matter that is seasonally more consistent, although of relatively small magnitude. The fate of organic material produced by SIMCO in Antarctica is largely unknown but may represent an important link between sea ice dynamics and secondary production in nearshore food webs. We used whole tissue and compound-specific stable isotope analysis of consumers to test whether the sea ice microbial community is an important source of organic matter supporting nearshore communities in the Ross Sea. We found distinct gradients in delta13C and delta15N of SIMCO corresponding to differences in inorganic carbon and nitrogen acquisition among sites with different sea ice extent and persistence. Mass balance analysis of a suite of consumers demonstrated large fluxes of SIMCO into the nearshore food web, ranging from 5% to 100% of organic matter supplied to benthic species, and 0-10% of organic matter to upper water column or pelagic inhabitants. A delta13C analysis of nine fatty acids including two key biomarkers for diatoms, eicosapentaenoic acid (EPA, 20:5omega3), and docosahexaenoic acid (DHA, 22:6omega3), confirmed these patterns. We observed clear patterns in delta13C of fatty acids that are enriched in 13C for species that acquire a large fraction of their nutrition from SIMCO. These data demonstrate the key role of SIMCO in ecosystem functioning in Antarctica and strong linkages between sea ice extent and nearshore secondary productivity. While SIMCO provides a stabilizing subsidy of organic matter, changes to sea ice coverage associated with climate change would directly affect secondary production and stability of benthic food webs in Antarctica.  相似文献   

3.
Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation.  相似文献   

4.
In the heterogeneous marine environment, predators can increase foraging success by targeting physical oceanographic features, which often aggregate prey. For northern fur seals (Callorhinus ursinus), two prevalent oceanographic features characterize foraging areas during summer in the Bering Sea: a stable thermocline and a subsurface “cold pool”. The objective of this study was to examine the influence of these features on foraging behavior by equipping fur seals from St. Paul Island (Alaska, USA) with time-depth recorders that also measured water temperature. Foraging bout variables (e.g., mean dive depth and percent time diving in a bout) were compared with respect to subsurface thermal characteristics (thermocline presence and strength and cold pool presence). Over 74% of bouts occurred in association with strong thermoclines (temperature change > 5°C). Few differences were found for dive behavior in relation to the presence of a thermocline and the cold pool, but for epipelagic bouts, a strong thermocline resulted in increased bottom times, number of dive wiggles, and percent time diving when compared to moderate thermoclines. There was also a positive relationship between mean dive depth and thermocline depth. The combination of increasing foraging effort in areas with strong thermoclines and diving to depths closely related to the thermocline indicates this feature is important foraging habitat for northern fur seals and may act to concentrate prey and increase foraging success. By recognizing the environmental features northern fur seals use to find prey, managers will be better equipped to identify and protect foraging habitat that is important to northern fur seals, and possibly other marine predators in the Bering Sea.  相似文献   

5.
T. Kobari  T. Ikeda 《Marine Biology》1999,134(4):683-696
Vertical distribution and population structure of Neocalanus cristatus were investigated at Site H in the Oyashio region from September 1996 through October 1997 to evaluate their life cycle mode. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of life cycles of this species. At Site H, N. cristatus spawned throughout the year below 500 m depth, with a peak from October to December. The resulting eggs and nauplii floated/migrated upward, and formed an abundance peak of Copepodite Stage 1 (C1) in the surface layer in February. In the surface layer, the C1 developed and reached C5 by early June through a phytoplankton bloom which occurred in mid-March to end of June. The C5 migrated to deeper layers in July and August, where they molted to adults. Apparently, the developmental time from C5 to adults was highly variable (>1 month), and some might overwinter. The life cycle of N. cristatus appeared to be annual for the major portion of the population. Taking into account sampling season, temporal changes in vertical distribution and population structure data collected from regions other than Site H, there was a close correlation in the timing of the life cycle over the entire subarctic Pacific, but the reproduction season (April to June) was observed to be different in the Okhotsk and Japan Sea populations. Regional comparison of prosome length of C5 individuals, including those in the Bering Sea, indicated significantly larger sizes of specimens from the Japan Sea and Okhotsk Sea, as compared with those from the entire subarctic Pacific. Possible causes for regional variability in life cycle patterns and body sizes are discussed. Received: 18 December 1998 / Accepted: 19 April 1999  相似文献   

6.
Zooplankton was sampled in the Storfjord and ice-covered Barents Sea during March 2003. Environmental conditions represented a typical winter situation with low air temperatures, close pack ice, and extremely low chlorophyll concentrations. Polar water dominated the hydrographic regime in the upper layers. Zooplankton distribution reflected spatial variability of hydrography. The copepods Pseudocalanus spp., Oithona similis, Microsetella norvegica together with gastropod larvae were most numerous. Biomass averaged for the entire water column varied from 3.3 to 14.3 mg dry mass m−3, Calanus glacialis and Parasagitta elegans contributed most, followed by C. finmarchicus, Oithona similis, and Pseudocalanus spp. Various holoplankters showed reproductive activity, especially cyclopoid copepods and chaetognaths. A few C. glacialis females laid eggs in situ, but when fed diatom cultures rapidly increased their egg production. Meroplankton including larvae of nudibranchia, bivalvia, ophiuroida, polychaeta, and bryozoa were also present. Our data demonstrate that the pelagic community of the seasonally ice-covered Barents Sea was not in a “sleeping” state at the end of the winter, but in addition to dormant stages, a portion of mainly omnivorous and several carnivorous species was reproducing.  相似文献   

7.
Abstract:  Geographic changes in species distributions toward traditionally cooler climes is one hypothesized indicator of recent global climate change. We examined distribution data on 56 bird species. If global warming is affecting species distributions across the temperate northern hemisphere, these data should show the same northward range expansions of birds that have been reported for Great Britain. Because a northward shift of distributions might be due to multidirectional range expansions for multiple species, we also examined the possibility that birds with northern distributions may be expanding their ranges southward. There was no southward expansion of birds with a northern distribution, indicating that there is no evidence of overall range expansion of insectivorous and granivorous birds in North America. As predicted, the northern limit of birds with a southern distribution showed a significant shift northward (2.35 km/year). This northward shift is similar to that observed in previous work conducted in Great Britain: the widespread nature of this shift in species distributions over two distinct geographical regions and its coincidence with a period of global warming suggests a connection with global climate change.  相似文献   

8.
We examined trends in sea ice cover between 1979 and 2002 in four months (March, June, September, and November) for four large (approximately 100,000 km2) and 12 small (approximately 10,000 km2) regions of the western Arctic in habitats used by bowhead whales (Balaena mysticetus). Variation in open water with year was significant in all months except March, but interactions between region and year were not. Open water increased in both large and small regions, but trends were weak with least-squares regression accounting for < or =34% of the total variation. In large regions, positive trends in open water were strongest in September. Linear fits were poor, however, even in the East Siberian, Chukchi, and Beaufort seas, where basin-scale analyses have emphasized dramatic sea ice loss. Small regions also showed weak positive trends in open water and strong interannual variability. Open water increased consistently in five small regions where bowhead whales have been observed feeding or where oceanographic models predict prey entrainment, including: (1) June, along the northern Chukotka coast, near Wrangel Island, and along the Beaufort slope; (2) September, near Wrangel Island, the Barrow Arc, and the Chukchi Borderland; and (3) November, along the Barrow Arc. Conversely, there was very little consistent change in sea ice cover in four small regions considered winter refugia for bowhead whales in the northern Bering Sea, nor in two small regions that include the primary springtime migration corridor in the Chukchi Sea. The effects of sea ice cover on bowhead whale prey availability are unknown but can be modeled via production and advection pathways. Our conceptual model suggests that reductions in sea ice cover will increase prey availability along both pathways for this population. This analysis elucidates the variability inherent in the western Arctic marine ecosystem at scales relevant to bowhead whales and contrasts basin-scale depictions of extreme sea ice retreats, thinning, and wind-driven movements.  相似文献   

9.
Vertical distribution and population structure of Eucalanus bungii were investigated at site H in the Oyashio region (western subarctic Pacific) from September 1996 through October 1997 to evaluate the species lifecycle pattern and associated ontogenetic vertical migration. Additional temporary samplings were also made at several stations covering the entire subarctic Pacific, Okhotsk Sea and Japan Sea, as a basis for regional comparison of lifecycle features of this species. At site H, a marked phytoplankton bloom occurred from mid-March to June, and E. bungii spawned in April/May in the surface layer. Resulting nauplii and copepodite stage 1 (C1) formed a prominent abundance peak in early June. The C1 developed and reached C5 by August. The development of nauplii through C4 occurred in the surface layer. From August onwards, C5 and a small fraction of C3–C4 sank gradually deeper, and entered diapause to overwinter at >500 m depth. The C5 molted to C6 males and females in February and March, respectively. The C6 males and females mated at 250–500 m depth, and only mated C6 females ascended to the surface layer in April for spawning. Judging from the size of lipid droplets in the body, the C3–C5 specimens deposited lipids in the body through the phytoplankton bloom period, and the lipids were consumed gradually during overwintering. Taking account of sampling season, temporal changes in population structure, and vertical distribution, the data collected from the western subarctic Pacific and Okhotsk Sea are consistent with a 1-year lifecycle for the site H population, while the data from the central and eastern subarctic Pacific were consistent with a 2-year lifecycle. The populations from the southern and southeastern Japan Sea did not fit the features of either lifecycle scenario, and because of their very small population size it is suggested that they originated from the northern Japan Sea. Regional comparison of the prosome length of C6 females, including those in the Bering Sea, indicated significantly larger specimens from the Japan Sea and Okhotsk Sea, and smaller specimens in the eastern subarctic Pacific, as compared with those in the western subarctic Pacific (including site H) and Bering Sea. A possible overwintering mechanism of E. bungii is discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
The presence of mesopelagic organisms in the guts of surface-foraging seabirds feeding in open areas within seasonal pack ice in the Antarctic has given rise to questions regarding the effects of pack ice on the underlying mesopelagic community. Bottom-moored free-vehicle acoustic instruments were used in concert with midwater trawls and baited traps to examine the abundance, size distribution and vertical distribution of pelagic organisms in the uppermost 100 m of the water column during the austral spring of 1992 in two areas of the northwestern Weddell Sea, one covered by seasonal pack icc and the other free of ice cover. Acoustic largets were more abundant and significantly larger at the open-water station than beneath pack ice. However, targets at the ice-covered site exhibited a pronounced diel pattern, with the largest targets detected only at night. Samples from night trawls at the icecovered site contained several species of large, vertically-migrating mesopelagic fishes, whereas these species were absent from trawls taken during the day. In addition, baited traps deployed in pack ice just beneath the ice-water interface collected large numbers of scavenging lysianassoid amphipods, while deeper traps beneath the ice and traps at the open-water station were empty, indicating the presence of a scavenging community associated with the undersurface of the ice. These results sapport the idea that mesopelagic organisms migrate closer to the surface beneath pack ice than in open water, exposing them to possible predation by surface-foraging seabirds.  相似文献   

11.
Seabirds were systematically censused during more than 6 000 transect counts from research vessels in the North Pacific Ocean and Bering Sea during the summers of 1975 to 1984. Density indices were calculated for 1o latitude-longitude blocks for 71 species. Blocks were assigned to oceanographic regions (current systems and domains) on the bases of geography, sea surface temperature and salinity. Bird abundances across regions were patchy; concentrations occurred at boundaries. Regional avifaunas overlapped as a function of three factors: similarity of water-types, geographic adjacency, and proximity to nesting areas. Four major avifaunas were apparent: the Bering Sea (and adjacent regions), the Subarctic Current System/Transition Domain (and adjacent regions), Upwelling Domain, and North Pacific Central Water. The subarctic boundary sharply separated different avifaunas. Ocean productivity may be the factor that ultimately affects avifaunal composition.  相似文献   

12.
The Barents Sea is among the most productive areas in the world oceans, and its shallow banks exhibit particularly high rates of primary productivity reaching over 300 g C m?2year?1. Our study focused on the Svalbard Bank, an important feeding area for fishes and whales. In order to investigate how benthic community structure and benthic secondary production vary across environmental gradients and through time, we sampled across the bank and compared results with a similar study conducted 85 years ago. Considerable variability in community structure and function across bank corresponded with differences in the physical structure of the habitat, including currents, sedimentation regimes and sediment type, and overlying water masses. Despite an intensive scallop fishery and climatic shifts that have taken place since the last survey in the 1920s, benthic community structure was very similar to that from the previous survey, suggesting strong system resilience. Primary and secondary production over shallow banks plays a large role in the Barents Sea and may act as a carbon subsidy to surrounding fish populations, of which many are of commercial importance.  相似文献   

13.
C. Guo  W. M. Dunstan 《Marine Biology》1995,122(2):333-339
Chlorophyll a-specific in vivo fluorescence exhibited depth-dependent changes in a Sargasso Sea phytoplankton community, decreasing from a maximum value at the surface to a minimum at 90m, and then increasing again below 90 m. This distribution pattern was not explained by irradiance conditions, diurnal variability, senescence in the deep population, or changes in light-absorption efficiency of chlorophyll a. However, a significant positive correlation was found between mean phytoplankton cell size and fluorescence number in the upper euphotic zone, where nutrient concentrations were low. We hypothesize that the direct cause for this observed correlation was nutrient limitation. In this picoplankton-dominated community, packaging effect was minimal. Under nutrient-limiting conditions, as mean cell size increases photosynthetic efficiency decreases and therefore fluorescence number increases. In the lower euphotic zone where nutrients were not limiting, changes in fluorescence number exhibited weak size-dependence and appeared to be related to species compositional changes.  相似文献   

14.
Although the impacts of climate and land-use changes on biodiversity have been widely documented, their joint effects remain poorly understood. We evaluated how nonbreeding waterbird communities adjust to climate warming along a gradient of land-use change. Using midwinter waterbird counts (132 species) at 164 major nonbreeding sites in 22 Mediterranean countries, we assessed the changes in species composition from 1991 to 2010, relative to thermal niche position and breadth, in response to regional and local winter temperature anomalies and conversion of natural habitats. We observed a low-level, nonsignificant community adjustment to the temperature increase where natural habitat conversion occurred. At the sites affected by natural habitat conversion, the relative increase of warm-dwelling species in response to climate warming was 6 times lower and the relative species decline was 3 times higher than in the sites without natural habitat conversion. We found no evidence of community adjustment to climate warming when natural habitat conversion was >5% over 15 years. This strong negative effect suggests an antagonistic interaction between climate warming and habitat change. These results underline the importance of habitat conservation in community adjustment to climate warming.  相似文献   

15.
Two oceanographic cruises were carried out in the northern Adriatic Sea, from June, 1996 to February, 1997. Samples were collected using a BIONESS electronic multinet (204 samples on 54 stations) along inshore-offshore sections. Zooplankton abundance and biomass were estimated in relation to the variability of temperature, salinity and fluorescence. Spatial and vertical distribution patterns of the most important zooplankton groups were studied. During June, in the northern area, abundance and biomass of 2787 - 1735 r ind m and 29.3 - 26.7 r mg r m, respectively, were reported. The zooplankton community was constituted essentially by copepods and cladocerans. In the southern area, instead, an abundance of 4698 - 5978 r ind r m and a dry weight of 25.4 - 15.3 r mg r m were observed, with a reverse dominance ratio between these groups. In February, in the northern area the zooplankton community (1380 - 595 r ind r m and 19.6 - 9.9 r mg r m) was mainly constituted by copepods, larvae of invertebrates, appendicularians and cladocerans; in the southern area zooplankton average abundance was 969 - 493 r ind r m and 9.9 - 3.2 r mg r m being copepods, cladocerans, appendicularians and larvae of invertebrates. The zooplankton spatial distribution, in this period, did not show the classic inshore-offshore gradient. Spatial distribution and biomass values of zooplankton, in the northern Adriatic Sea, were strongly influenced by hydrological characteristics, allowed up to formulate a preliminary model about distribution, along the water column, of the different associations of species assemblages with regard to different water masses in the neritic system.  相似文献   

16.
To disentangle genetic and environmental influences on phenotypic traits that influence maturation of fish, it would be useful to predict the expected change due to environment alone to compare with observations. This requires a realistically scaled, species-specific life history model of environmentally determined variation in individual growth and maturation. In this study, inter-annual variability in the proportion of mature haddock in the west North Sea was predicted using a stochastic, individual-based simulation model incorporating a temperature-dependent maturation threshold. This species and region are particularly relevant to the debate about the relative importance of genetic and climate change because North Sea haddock have experienced both high fishing mortality and substantial warming in recent decades. Using observed temperatures in combination with temperature-dependent models for growth and maturation, the simulation model predicted year-to-year variation in length and maturity at age expected for cohorts produced from 1979 to 2006. The simulated proportions mature at age 2 were then compared to the observed proportions in an annual bottom trawl survey. Although the model explained much of the high-frequency variation in maturation, the simulated time trend under-represented the rate of increase in the observed trend in proportions mature. This inability of the temperature-dependent life history model to predict the magnitude of change appears consistent with a long-term decline in the maturation threshold. This result provides indirect support for a genetic change in a key life history trait.  相似文献   

17.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

18.
Choanoflagellates are thought to be an important component of oceanic microbial food webs, but little quantitative data exists on their abundance,, distribution, or relationship to potential food sources. In an Antarctic ice edge zone (northern Weddell Sea, March 1986), choanoflagellate abundance varied over two orders of magnitude in the upper 100 m. The lowest abundances were recorded at the bottom of the water column under ice cover and the highest abundances occurred in the upper 30 m of open water. Species that were predominantly in colonies dominated the open-water samples. Abundances of total choanoflagellates and some individual species were correlated with primary and secondary biomass and production, indicating a response to gradients in potential food sources. This suggests that choanoflagellates are tightly coupled with their food sources and supports the contention that they may an important link between bacteria-sized particles and metazoan grazers.  相似文献   

19.
Anthropogenic climate change constitutes a main challenge for the Wadden Sea. Accelerated sea level rise, increasing temperatures and changing wind climate may strongly alter present structures and functions of the ecosystem with negative consequences both for nature conservation and for coastal risk management. Being aware of these challenges, Schleswig-Holstein State Government decided to establish an integrated climate change adaptation strategy for the Schleswig-Holstein sector of the Wadden Sea. The strategy was adopted in June 2015. It aims at the long-term maintenance of present functions and structures as well as the integrity of the Wadden Sea ecosystem in a changing climate. The strategy was prepared by a project group consisting of representatives from State authorities as well as from nature conservation organisations and local institutions. First outcome of the strategy is that extra adaptation measures will not be necessary in the coming decades. However, pending on the future rate of sea level rise, shoreline erosion and sediment deficits in the Wadden Sea will increase and sooner or later drowning of tidal flats and terrestrial habitats like beaches, primary dunes and salt marshes will start. At the time when management measures to counteract the negative developments become expedient from a nature conservation viewpoint as well as for coastal risk management, adequate actions with minimized ecological interferences are possible. It is assumed that balancing the sediment deficits as the main adaptation measure may be implemented most efficiently by concentrating sediment suppletion at locations where natural forces organize redistribution in the Wadden Sea. Local technical coastal risk management measures like the strengthening of sea defences will, nevertheless, remain necessary as well.  相似文献   

20.
Understanding the effects of climate change on boreal forests which hold about 7% of the global terrestrial biomass carbon is a major issue. An important mechanism in boreal tree species is acclimatization to seasonal variations in temperature (cold hardiness) to withstand low temperatures during winter. Temperature drops below the hardiness level may cause frost damage. Increased climate variability under global and regional warming might lead to more severe frost damage events, with consequences for tree individuals, populations and ecosystems. We assessed the potential future impacts of changing frost regimes on Norway spruce (Picea abies L. Karst.) in Sweden. A cold hardiness and frost damage model were incorporated within a dynamic ecosystem model, LPJ-GUESS. The frost tolerance of Norway spruce was calculated based on daily mean temperature fluctuations, corresponding to time and temperature dependent chemical reactions and cellular adjustments. The severity of frost damage was calculated as a growth-reducing factor when the minimum temperature was below the frost tolerance. The hardiness model was linked to the ecosystem model by reducing needle biomass and thereby growth according to the calculated severity of frost damage. A sensitivity analysis of the hardiness model revealed that the severity of frost events was significantly altered by variations in the hardening rate and dehardening rate during current climate conditions. The modelled occurrence and intensity of frost events was related to observed crown defoliation, indicating that 6-12% of the needle loss could be attributed to frost damage. When driving the combined ecosystem-hardiness model with future climate from a regional climate model (RCM), the results suggest a decreasing number and strength of extreme frost events particularly in northern Sweden and strongly increasing productivity for Norway spruce by the end of the 21st century as a result of longer growing seasons and increasing atmospheric CO2 concentrations. However, according to the model, frost damage might decrease the potential productivity by as much as 25% early in the century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号