首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The term 'Waldsterben' was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe, defined here as consisting of Germany, Switzerland, southeastern France (Alsace), the Czech Republic, northern Italy and Austria. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany, such as the Fichtelgebirge. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past; the reasons for this are uncertain, although increases in forest area have not substantially contributed to the observed trends. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms 'Waldsterben' (forest deaths) and 'neuartige Waldsch?den' (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead, different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree species within a forest.  相似文献   

2.
Atmospheric deposition of sulphur and nitrogen compounds may lead to enhanced leaching of base cations, accumulation of nitrogen in organic matter, lowered pH and increased concentration of toxic aluminium in soil, which in turn may affect the vitality of forest trees. A general monitoring of forest condition has been initiated in many European countries, partly in order to reveal stresses caused by acidification. However, forest condition is also affected by many other factors. This paper examines a seven-year series of crown-condition data from Local County Monitoring Plots in Norway spruce stands in Norway. Average, time trend and lability variables were calculated for crown density and crown colour for each plot. Wet deposition of sulphate, ammonium and nitrate for each plot were estimated using data from the national air and precipitation monitoring programmes. Soil data are based on soil sampling within the plots. The analysis gave no evident support for the hypothesized negative effect on crown condition from sulphur and nitrogen deposition and related alterations in soil.  相似文献   

3.
Ozone impact on Mediterranean forests remains largely under-investigated, despite strong photochemical activity and harmful effects on crops. As representative of O3 impacts on Mediterranean vegetation, this paper reviews the current knowledge about O3 and forests in Italy. The intermediate position between Africa and European mid-latitudes creates a complex patchwork of climate and vegetation. Available data from air quality monitoring stations and passive samplers suggest O3 levels regularly exceed the critical level (CL) for forests. In contrast, relationships between O3 exposure and effects (crown transparency, radial growth and foliar visible symptoms) often fail. Despite limitations in the study design or underestimation of the CL can also affect this discrepancy, the effects of site factors and plant ecology suggest Mediterranean forest vegetation is adapted to face oxidative stress, including O3. Implications for risk assessment (flux-based CL, level III, non-stomatal deposition) are discussed.  相似文献   

4.
Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.  相似文献   

5.
The national Forest Health Monitoring (FHM) program requires protocols for monitoring soil carbon contents. In a pilot study, 30 FHM plots loblolly shortleaf (Pinus taeda L./Pinus echinata Mill.) pine forests across Georgia were sampled by horizon and by depth increments. For total soil carbon, approximately 40% of the variance was between plots, 40% between subplots and 20% within subplots. Results by depth differed from those obtained by horizon primarily due to the rapid changes in carbon content from the top to the bottom of the A horizon. Published soil survey information overestimated bulk densities for these forest sites. The measurement of forest floor depths as a substitute to sampling did not provide reliable estimates of forest floor carbon. Precision of replicate samples was approximately 10-30% for field duplicates and 5-10% for laboratory duplicates. Based on national indicator evaluation criteria, sampling by depth using bulk density core samplers has been recommended for national implementation. Additional procedures are needed when sampling organic soils or soils with a high percentage of large rock fragments.  相似文献   

6.
Measuring carbon in forests: current status and future challenges   总被引:30,自引:0,他引:30  
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.  相似文献   

7.
Over the last decades much of the work on the impact of air pollution on forests in Europe has concentrated on central and northern countries. The southern part of Europe has received far less attention, although air pollutants-especially the photochemical ones-can reach concentrations likely to have adverse effects on forest vegetation. Although international forest condition surveys present serious problems where data consistency is concerned, they reveal considerable year-by-year species-specific fluctuations rather than a large-scale forest decline. Cases of obvious decline related to environmental factors are well circumscribed: (1) the deterioration of some coastal forests due to the action of polluted seaspray; (2) the deterioration of reforestation projects, especially conifers, mainly due to the poor ecological compatibility between species and site; and (3) the decline of deciduous oaks in southern Italy and of evergreen oaks in the Iberian peninsula apparently due to the interaction of climate stresses and pests and diseases. However, besides obvious deterioration, changes in environmental factors can provoke situations of more subtle stress. The most sensitive stands are Mediterranean conifer forests and mesophile forests of the Mediterranean-montane plane growing at the edges of the natural ecological distribution. Evergreen sclerophyllous forests appear less sensitive to variations in climatic parameters, since they can adapt quite well to both drought and the action of UV-B rays. Several experiments were carried out to test the sensitivity of Mediterranean forest species to air pollutants. Most of those experiments used seedlings of different species treated with pollutant concentrations too high to be realistic, so it is difficult to derive adequate information on the response of adult trees in field conditions. Ozone has been proved to cause foliar injury in a variety of native forest species in different Southern European countries, while the effects of other pollutants (e.g. nitrogen, sulphur, acidic deposition) are less obvious and likely to be very localized. In the case of ozone, visible symptoms were almost completely missed by large-scale surveys and-at the same time-non-visible symptoms are suspected to be even more widespread than the visible ones. Owing to this and to the complex relationships existing between species sensitivity, ozone exposure and doses, length of the vegetative periods, influence of climatic and edaphic condition on the tree's response, the impacted areas are yet to be identified. Therefore, the large-scale impact of air pollutants on the forests of Southern Europe remains largely unknown, until more specific investigations are carried out.  相似文献   

8.
Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 10(12) g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the eastern US. A single storm can convert the equivalent of 10% of the total annual carbon sequestrated by US forests into dead and downed biomass. Given that forests require at least 15 years to recover from a severe storm, a large amount of forest carbon is lost either directly (through biomass destruction) or indirectly (through lost carbon sequestration capacity) due to hurricanes. Only 15% of the total carbon in destroyed timber is salvaged following a major hurricane. The remainder of the carbon is left to decompose and eventually return to the atmosphere. Short-term increases in forest productivity due to increased nutrient inputs from detritus are not fully compensated by reduced stem stocking, and the recovery time needed to recover leaf area. Therefore, hurricanes are a significant factor in reducing short-term carbon storage in US forests.  相似文献   

9.
Increasing concern over the level of nitrogen inputs to forests in polluted rain has led to a number of suggestions of possible adverse consequences under the general heading of nitrogen saturation. A saturated ecosystem may be one (a) in which the trees show no growth response to the addition of further nitrogen, (b) in which addition of further nitrogen leads to growth disturbances or reduction, or (c) in which elevated nitrogen inputs lead to increased losses of nitrate in streamwater. Experience gained from forest fertilizer experiments is used to examine each of these suggestions. A definition involving a lack of growth response (a) is shown to be based on a lack of understanding of the continuing changing patterns of nitrogen demand and mineralization in even-aged forests. Similarly, using growth disturbances (b) is unsatisfactory because, it is suggested, these are either secondary deficiencies that appear once growth accelerates with added nitrogen or are a consequence of changing growth with increasing size. A definition based on increased loss of nitrate is, by analogy with the situation for sulphate, at least superficially attractive. However, the fact that nitrate retention is predominantly biological, rather than chemical, makes for difficulties and the limited evidence available suggests that many exceptions and variations may exist. Whilst experience with forest fertilizers might not be entirely apposite, for example foliar uptake from polluted rain may be a factor, it is urged that at least any hypothesis put forward should be compatible with information gained from fertilizer trials.  相似文献   

10.
The results of forest health status assessments in the Carpathian Mountains from the monitoring networks developed by the European Union Scheme on the Protection of Forest Against Atmospheric Pollution (EU Scheme) and International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests), have led to a better understanding of the impact of air pollution and other stressors on forests at the regional scale. During the period 1997-2001, forests in the Carpathian Mountains were severely affected by air pollution and natural stresses with 29.7-34.9% of the trees included in defoliation classes 2-4. The broadleaves were slightly healthier than the conifers, and European beech (Fagus sylvatica) was the least affected species. Norway spruce (Picea abies) has poor health status, with 42.9-46.6% of the trees damaged (2-4% defoliation classes). Silver fir (Abies alba) damage was also high, with 46.0-50.9% in defoliation classes 2-4. Pines (primarily Pinus sylvestris) were the least affected of the conifers, with 24.9-33.8% in defoliation classes 2-4. The results from the transnational networks (16 x 16 km) show that the Carpathian forests are slightly more damaged than the average for the entire Europe. The correlative studies performed in individual European countries show the relationships between air pollution stressors with trends in defoliation and a possible effect of natural stresses at each site. More specific, effects of tree age, drought, ozone and acid deposition critical level exceedances were demonstrated to affect crown condition.  相似文献   

11.
The effects of ozone and other photochemical oxidants on individual trees have been studied for several decades, but there has been much less research on the potential effects on entire forest ecosystems. Given that ozone and other oxidants affect the production and subsequent fate of biogenic volatile organic compounds that act as signalling molecules, there is a need for more detailed study of the role of oxidants in modifying trophic interactions in forests. Deposition of fine particulates to forests may act as a source of nutrients, but also changes leaf surface properties, increasing the duration of surface wetness and modifying the habitat for epiphytic organisms, leading to increased risks from pathogens. Even where this pathway contributes a relatively small input of nutrients to forests, the indirect effects on canopy processes and subsequent deposition to the forest floor in throughfall and litter may play a more important role that has yet to be fully investigated.  相似文献   

12.
Dry and wet deposition onto thirty forest stands in relation to stand structure is studied by sampling throughfall and bulk precipitation. Nine measurement sites are situated in Pseudotsuga menziesii stands, ten in Pinus sylvestris and eleven in Quercus robur stands. All stands are situated within a radius of 1.2 km to assure a more or less equal air pollution load. In each stand, detailed forest structure inventories are made to determine aerodynamic roughness, collecting efficiency and surface area parameters. Measurements to data cover a four month period (April-July 1990). First results show relatively high throughfall deposition in Pseudotsuga menziesii stands. Lowest throughfall fluxes are recorded for Quercus robur and intermediate values for Pinus sylvestris stands. There are indications of a relatively strong canopy exchange in Quercus robur stands during the measurement period. Many results from forest stand structure inventories are not available yet. However, a strong relation is observed between throughfall deposition in Pseudotsuga menziesii stands and total crown volume.  相似文献   

13.
With 20% of the world’s forests, Russia has global potential in bioeconomy development, biodiversity conservation and climate change mitigation. However, unsustainable forest management based on ‘wood mining’ reduces this potential. Based on document analysis, participant observations and interviews, this article shows how non-state actors—environmental NGOs and forest companies—address forest resource depletion and primary forest loss in Russia. We analyse two key interrelated forest discourses driven by non-state actors in Russia: (1) intensive forest management in secondary forests as a pathway towards sustained yield and primary forest conservation; (2) intact forest landscapes as a priority in primary forest conservation. We illustrate how these discourses have been integrated into policy debates, institutions and practices and discuss their relation to relevant global discourses. The article concludes that despite successful cases in conserving intact forest landscapes, there is still a frontier between sustainable forest management discourses and forestry practice in Russia.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01643-6.  相似文献   

14.
Lukina N  Nikonov V 《Chemosphere》2001,42(1):19-34
This paper describes the condition of forest ecosystems subjected to smelter pollution in the Kola peninsula. This assessment is based on the parameters of the biogeochemical cycle. The defoliation index was used to delimit three basic forest states: background, defoliating, sparse. Close to the smelter, due to expansion of the area not covered by vegetation, a fourth type of state, so-called "industrial deserts", has been observed. The concentrations of sulphur, copper and nickel in the precipitation in the forests generally declined with distance from the smelter. The defoliating forests are noted for the highest Ca, Mg, K concentrations in the summer precipitation. In sparse forests and industrial deserts a decrease in the Ca, Mg, K concentrations in the summer precipitation in comparison with the defoliating forests, despite the particle emissions, could be attributed to the reduction in forest biomass. The higher levels of soil and soil leachate carbon and acidity in the defoliating forests was due to higher litterfall and to the higher dissolution of fulvic acids by the acidic precipitation. This increase in organic matter levels affects soil cation exchange capacity and cation saturation. The pine trees demonstrated significant changes in the uptake of elements in all types of forests under pollution. Elevated levels of S, Ni, Cu and K and reduced levels of Mg, Mn and Zn were found in the needles of different age classes.  相似文献   

15.
Francis TB  Schindler DE 《Ambio》2006,35(6):274-280
One of the least understood aspects of aquatic ecology is the role of riparian zones of lakes, and how these habitats and their functions are impacted by human development of lakeshores. We investigated the effects of residential lakeshore development on littoral coarse woody debris (CWD) distribution and on riparian forest characteristics by comparing 18 lakes in the U.S. Pacific Northwest with 16 previously surveyed lakes in the U.S. Upper Midwest. Residential development had a strong negative effect on CWD and riparian forest characteristics at both local and whole-lake scales. There was a strong positive correlation between riparian forest density and littoral CWD abundance in both regions. We found regional variation in CWD and riparian forest characteristics, mostly owing to differences in native forests. Our results suggest the role of local processes in determining CWD distribution and point to potential regional differences in littoral habitat structure associated with forest composition and lakeshore development that may have consequences for littoral-pelagic coupling in lakes.  相似文献   

16.
Pouliot M  Treue T  Obiri BD  Ouedraogo B 《Ambio》2012,41(7):738-750
Forest degradation in West Africa is generally thought to have negative consequences on rural livelihoods but there is little overview of its effects in the region because the importance of forests to rural livelihoods has never been adequately quantified. Based on data from 1014 rural households across Burkina Faso and Ghana this paper attempts to fill this knowledge gap. We demonstrate that agricultural lands and the non-forest environment including parklands are considerably more valuable to poor as well as more well-off rural households than forests. Furthermore, product types supplied by the non-forest environment are almost identical with those from forests. Accordingly, forest clearance/degradation is profitable for and, hence, probably performed by rural people at large. We attribute rural people's high reliance on non-forest versus forest resources to the two countries' restrictive and inequitable forest policies which must be reformed to promote effective forest conservation, e.g., to mitigate climate change.  相似文献   

17.
Stibig HJ  Malingreau JP 《Ambio》2003,32(7):469-475
The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.  相似文献   

18.
Carbon stock dynamics was monitored in the Uttara Kannada district, Western Ghats, India, for ten years on eight one-hectare sampling areas belonging to different management and forest categories. The study was initiated in 1984 and the area was monitored until 1994. Our study indicates that, in general, the carbon stock has enhanced during the study period with an average growth of 1.008 t/ha/year. However, there were differences in carbon stocks in different management regimes. The minor forests that are subjected to intense human pressures had a negative growth rate, i.e. 0.237 t/ha/year, while the reserve forests have a carbon assimilation rate of 1.31 t/ha/year. This indicates that human pressure has certainly decreased the carbon accumulation in the forests of Uttara Kannada. Despite the anthropogenic pressure, the minor forests have higher carbon accumulation through recruits as compared to the reserve forests. Thus it is suggested that a management strategy is needed to look into enhancing recruitment patterns in the minor forests which would become future carbon stocks.  相似文献   

19.
Air pollution and forest health: toward new monitoring concepts   总被引:4,自引:0,他引:4  
It is estimated that 49% of forests (17 million km(2)) will be exposed to damaging concentrations of tropospheric O(3) by 2100. Global forest area at risk from S deposition may reach 5.9 million km(2) by 2050, despite SO(2) emission reductions of 48% in North America and 25% in Europe. Although SO(2) levels have decreased, emissions of NO(x) are little changed, or have increased slightly. In some regions, the molar SO(4)/NO(3) ratio in precipitation has switched from 2/1 to near 1/1 during the past two decades. Coincidentally, pattern shifts in precipitation and temperature are evident. A number of reports suggest that forests are being affected by air pollution. Yet, the extent to which such effects occur is uncertain, despite the efforts dedicated to monitoring forests. Routine monitoring programmes provide a huge amount of data. Yet in many cases, these data do not fit the conceptual and statistical requirements for detecting status and trends of forest health, nor for cause-effect research. There is a clear need for a re-thinking of monitoring strategies.  相似文献   

20.
Abstract

Although extensive research on acidic deposition has been directed toward spruce-fir forests, less research has been done on the impacts of air pollution on eastern montane hardwood forests. The purpose of this study was to describe precipitation chemistry for several Appalachian hardwood forest sites at or near the Fernow Experimental Forest (FEF) to assess the potential for problems associated with acidic deposition. Emphasis was placed on seasonal patterns of ionic concentrations (H+, Ca++, NH4+; NO3-, and SO4=) and spatial variability of ionic concentrations and deposition among sites. Seasonal patterns of most ions showed highest concentrations during the summer months and deposition of H+ was especially pronounced during this time. Deposition of all ions was generally greater (related to greater precipitation) at three montane forested sample sites compared to a nonforested riverbottom site. Precipitation chemistry at FEF was similar to other sites throughout the eastern United States and contrasted sharply with mid-western and western sites. Eastern sites, including means for FEF sites, were uniformly 3-4 times higher in H+ and SO4= concentration than the mid-western and western sites. Precipitation at FEF was chronically acidic, more so during the growing season, and highest at higher elevations where environmental stresses can be most severe. Furthermore, there were occasional large discrepancies between the low-elevation site and the higher-elevation forested sites for precipitation chemistry and acidic deposition. These results suggest that synoptic-scale (network) data may greatly underestimate the pollutant conditions to which highelevation forest trees are exposed, since network data rarely take elevation into account and typically are based on annual ionic concentration and deposition means that may be considerably lower than those of the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号