首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou JL  Liu YP  Abrahams PW 《Chemosphere》2003,51(5):429-440
The distribution of trace metals Zn, Ni, Mn, Fe, Cu, Pb, Cd and Cr between suspended particulate matter (SPM) and water in the Conwy estuary, North Wales, has been studied in three surveys in 1998. Dissolved Cu and Mn showed some monthly variations. Most of the dissolved trace metals displayed a negative association with salinity, indicating rivers as a major source of inputs for them. Particulate Zn, Mn and Fe showed a decreasing concentration seaward, whilst the levels of Ni, Cu, Cr and Pb increased with salinity. SPM concentration was the most important variable significantly related to trace metal concentrations in SPM, with an inverse relationship between the two parameters. This was explained by the relative enrichment of trace metals in fine particles at low SPM concentrations and relative depletion of trace metals in coarse particles at high SPM concentrations. Particulate Zn, Mn and Pb were dominated by the fraction available to acetic acid (non-detrital), whilst particulate Ni, Fe and Cr were dominated by the fraction available to nitric acid (detrital). The partition coefficient of trace metals between SPM and water declined with increasing SPM concentration, consistent with the so-called "particle concentration effect". Such a phenomenon may be explained by the presence of fine particles (including colloids) enriched with trace metals at low SPM concentrations, and the salinity-induced desorption.  相似文献   

2.
Asbestos was once frequently used in building materials, but airborne fibres are now associated with serious health risks. This paper discusses the properties of asbestos and the ways in which certain forms can cause disease. Risks to the health of residents of asbestos-containing building are also explored. The detection, measurement and control of airborne asbestos demands careful monitoring. A case study is presented which describes the various procedures used to investigate the potential risks to residents of an asbestos-containing apartment building. Based on this investigation, recommendations are outlined for precautionary measures, mitigation techniques and further monitoring.  相似文献   

3.

Can Gio district is located in the coastal area of Ho Chi Minh City, southern Vietnam. Discharge of wastewater from Ho Chi Minh City and neighboring provinces to the rivers of Can Gio has led to concerns about the accumulation of trace metals (As, Cu, Cr, Ni, Pb, and Zn) in the coastal sediments. The main objective of this study was to assess the distribution of As, Cu, Cr, Ni, Pb, and Zn in surface and core sediments and to evaluate the contamination status in relation to local background values, as well as the potential release of these selected trace metals from sediments to the water environment. Sediment characteristization, including determination of fine fraction, pH, organic matter, and major elements (Al, Fe, Ca, K, Mg, and S), was carried out to investigate which parameters affect the trace metal enrichment. Fine fraction and Al contents were found to be the controlling proxies affecting the distribution of trace metals while other sediment characteristics did not show any clear influence on trace metals’ distribution. Although As concentrations in the sediments were much higher compared to its reference value in other areas, the enrichment factor based on local background values suggests minor contamination of this element as well as for Cr, Cu, and Pb. Risk assessment suggested a medium to very high risk of Mn, Zn, and Ni under acidification. Of importance is also that trace metals in sediments were not easily mobilized by organic complexation based on their low extractabilities by ammonium-EDTA extraction.

  相似文献   

4.
Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO(3), organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO(3) indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources.  相似文献   

5.
The potential of Corbicula fluminea (Müller) as an indicator for trace metal pollution was investigated. Laboratory experiments show that Corbicula has the capability to accumulate and eliminate trace metals in relation to their concentrations in ambient water. However, an effect of individual size was observed. Seasonal variations in the concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn in Corbicula, water and particulate matter from the upper section of the Shatt al-Arab River were studied. Sediment samples were also analysed. Metal concentrations were determined by means of flameless AAS. It was found that Corbicula is a suitable bio-indicator for monitoring of trace metal pollution. Metal concentrations in Corbicula tissues correlated better with their corresponding concentrations in particulate matter than with the dissolved form. Temporal variations in metal concentrations were attributed to several factors, including fluctuations in metal inputs, and in geochemical and hydrological characteristics of the water. The obtained levels of trace metals were comparable to those reported for control sites, with the exception of Cd, Cu and Zn whose concentrations were higher in both Corbicula and particulate matter.  相似文献   

6.
The stability of Mn oxides, and the potential for mobilization of associated trace metals, were assessed by simulating the onset of microbially-mediated reducing conditions in a continuous-flow column experiment. The column had previously been used for an in situ chemical oxidation (ISCO) experiment in which trichloroethylene was reacted with permanganate in the presence of aqueous trace metals, which produced Mn oxyhydroxides (MnO(x)) that sequestered the trace metals and coated the column sand. The column influent solution represented the incursion of ambient groundwater containing dissolved organic carbon (DOC) into an ISCO treatment zone. The influx of DOC-containing groundwater initiated a series of cation-exchange, surface-complexation and reductive-dissolution reactions that controlled the release of aqueous metals from the system. Peak concentrations in the effluent occurred in the order Na, Mo, Cr, Zn, K, Mn, Fe, Pb, Mg, Ni, Cu and Ca. Manganese release from the column was controlled by a combination of cation exchange, reductive dissolution and precipitation of rhodochrosite. The trend in Fe concentrations was similar to that of Mn, and also resulted from a combination of reductive dissolution and cation exchange. Cation exchange and/or surface-complexation were the primary mechanisms controlling Cu, Ni, Mo and Pb release to solution, while Zn and Cr concentrations did not display coherent trends. Although metal release from the treatment zone was evident in the data, concentrations of trace metals remained below 0.05 mg L(-1) with the exception of Mo which reached concentrations on the order of 1 mg L(-1). The establishment of anaerobic conditions in ISCO-treated aquifers may result in a prolonged flux of aqueous Mn(II), but with the exception of MoO(4)(2-), it is unlikely that trace metals sequestered with MnO(x) during ISCO will be released to the groundwater in elevated concentrations.  相似文献   

7.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

8.
The concentrations of Cd, Co, Cu, Cr, Fe, Hg, Mn, Ni, Pb, Sn, Ti and Zn were analyzed by AAS, ICP MS and AFS in soft tissues and byssal threads of Mytilus galloprovincialis from Masan Bay and Ulsan Bay, Korea. Spatial variations in metal concentrations were found. The levels of Cd, Pb, Hg, Cu, Zn, Co and Mn were very high in the mussels from Ulsan Bay (Sts. U1, U2) and comparable with elevated concentrations of these elements in Mytilus sp. reported to date for other geographical areas. Seasonal differences in some metal concentrations were also observed. These variations may be caused by factors such as: a large difference in seawater temperature, food supply for the mussel population and/or freshwater runoff of particulate metal to the coastal water and weight changes brought about by gonadal development and the release of sexual products. Pb, Cu, Zn, Co, Ni, Fe and Mn were more enriched in byssal threads than in the soft tissues, hence the byssus seems to be more sensitive in reflecting the availabilities of trace metals in the ambient waters. Concentrations of trace metals varied with respect to the size of mussels and season, depending on many factors like sexual development, and seawater temperature, etc. The levels of some trace metals in seawater, especially in suspended matter were correlated significantly with those in soft tissues and byssal threads. There were spatial variations in metal concentrations in the soft tissue and byssus attributed to different sources of trace elements located near the sampling sites. There were significant relationships between concentrations of some metals (Cd, Cu, Pb, and Zn) in mussel soft tissues and byssal threads and suspended matter. This suggests that M. galloprovincialis can be used as a sensitive biomonitor for the availabilities of trace elements in the coastal waters off Korea.  相似文献   

9.
Seven metals (Cd, Co, Cr, Cu, Fe, Ni and Pb) were monitored at the Seine-Aval wastewater treatment plant during 6 sampling campaigns in April 2004. Particulate and dissolved metals have been measured in 24 h composite samples at each treatment stage (primary settling, secondary activated sludge and tertiary flocculation by FeCl3). In addition, the diffusive gradient in thin film technique (DGT) was used to determine the dissolved inert and labile metal fraction. Although all treatment stages were able to decrease particulate metals concentrations in wastewater, most dissolved metals concentrations were mainly affected during primary settling. This unexpected result was attributed to tertiary sludge filtrate recirculation. Metals added via the FeCl3 reagent at the tertiary treatment were shown to lower the overall Cr removal from wastewater and to enrich Ni in effluents. The plant operating conditions (recirculation and reagent addition) appear therefore as important as treatment processes for the metals removal. Total metal fluxes were highly decreased by the whole treatment plant for Cd, Cr, Cu and Pb and to a lesser extend for Co and Ni. However, the labile metal fluxes were poorly decreased for Cu (18%), not significantly decreased for Ni and increased for Fe. The labile fraction of Cd, Co and Cr was not detectable at any stage of the plant. Discharged labile fluxes, at least for Ni, were potentially significant compared to the labile metal fluxes in the river measured downstream the plant. Treated urban wastewater discharges should be carefully considered as a possible source of bioavailable trace metals.  相似文献   

10.
The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the "background noise" of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation.  相似文献   

11.
The concentrations of four macroelements (C, N, P, S) and eight trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) were measured in the leaves and roots of the emergent plant, Phragmites communis Trin., and in the shoots and roots of the submersed Najas marina L., taken from Lake Averno (Naples, Italy). Phragmites communis leaves showed higher concentrations of carbon, nitrogen and phosphorus than roots, while the roots exhibited significantly higher concentrations of sulphur and trace metals. Najas marina roots also showed higher concentrations of sulphur and trace metals than shoots, but these differences were less marked than in Phragmites communis except for sulphur. Sulphur was the only macronutrient to show the highest concentrations in the roots. Phragmites communis roots had higher values of Cr, Cu, Fe, Mn and Ni than Najas marina roots. By contrast, Cd, Cr, Fe, Ni, Pb and Zn concentrations were higher in Najas marina shoots than in Phragmites communis leaves. Phragmites communis, available through the year, showing high capability to accumulate trace metals in the roots, appears a good monitor of lake contamination, better than Najas marina.  相似文献   

12.
Gil C  Boluda R  Ramos J 《Chemosphere》2004,55(7):1027-1034
This study determines total levels of three (Cd, Pb and Ni) potentially toxic trace elements in western Almería (Spain) greenhouse surface soil horizons using microwave digestion; it establishes the geochemical baseline concentration, and it investigates possible relationships between soil properties and elemental concentrations. The results show that the soil concentration of these heavy metals is lower than mentioned in the European and Spanish normative, but they are higher than those reported by other authors working on agricultural soils. The obtained geochemical baseline concentrations (mg kg(-1)) were: Cd 0.4-0.8, Pb 2.5-89.9 and Ni 16.1-30.7. Using the upper baseline criterion, 88% of greenhouse soils have relatively higher content of heavy metals because of their Cd, Pb and Ni concentration. Moreover, soil properties are related to heavy metals contents suggesting that among Cd, Pb and Ni have a similar origin and those total metal concentrations are controlled primarily by soil compositions.  相似文献   

13.
Cukrov N  Cmuk P  Mlakar M  Omanović D 《Chemosphere》2008,72(10):1559-1566
The spatial distribution of dissolved and total trace metals (Zn, Cd, Pb and Cu) in the Krka River (partly located in the Krka National Park) has been studied using a "clean" sampling, handling and analysis technique. Differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) has been used for trace metal analysis. The Krka River has been divided into the upper and lower flow region with respect to the metals concentration and main physico-chemical parameters. A significant increase in trace metal concentration as the result of the untreated waste water discharge downstream of Knin Town has been registered in the upper flow region. Due to a specific characteristic of the Krka, the so-called self-purification process, a decrease in the elevated trace metals concentration from the water column takes place at numerous small lakes formed by tufa barriers (at the end of the upper flow region). The clean groundwater input at the beginning of the lower flow region additionally contributes to the observed decrease in trace metals concentration in the Krka, maintaining them at a very low level in the remaining region of fresh-water flow. The determined median total concentrations were zinc 120-7400 ng l(-1), cadmium 3-8 ng l(-1), lead 11-250 ng l(-1) and copper 110-440 ng l(-1). Karst rivers, such as the Krka River, with extremely low natural concentrations of trace metals are highly sensitive to the anthropogenic influence. Therefore, such aquatic systems require implementation of strict protection regimes in the entire catchments area.  相似文献   

14.
Increased consciousness for safeguarding the aqueous environment has prompted a search for alternative technologies for the removal of toxic metal ions from aqueous solutions. In this regard, a wide variety of biomass is being considered as adsorbents of heavy metals for treatment of industrial and domestic wastewaters as well as natural waters, including drinking water. In the present investigation, the potential of Quercus ilex phytomass from stem, leaf and root as an adsorbent of chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd) and lead (Pb) at ambient temperature was investigated. The metal uptake capacity of the root for different metals was found to be in the order: Ni>Cd>Pb>Cu>Cr; stem Ni>Pb>Cu>Cd>Cr; and leaf Ni>Cd>Cu>Pb>Cr. The highest amount adsorbed was Ni (root>leaf>stem). Data from this laboratory demonstrated that Ni is sequestered mostly in the roots, where concentrations can be as high as 428.4 ng/g dry wt., when 1-year-old seedlings were treated with Ni (2000 mg/l) in pot culture experiments, compared to 7.63 ng/g dry wt., control (garden and greenhouse soil) topsoil where Ni was present in trace amounts. This proves that the root biomass of Q. ilex has the capacity for complexing Ni. Cr exhibited the least adsorption values for all the three types of phytomass compared to other metals. The trend of adsorption of the phytomass was similar for Ni and Cd, i.e. root>leaf>stem. Desorption with 10 mM Na(4) EDTA was effective (55-90%) and, hence, there exists the possibility of recycling the phytomass. The biosorption results of recycled phytomass suggest that the selected adsorbents are re-usable. The advantages and potential of the Q. ilex phytomass as a biofilter of toxic trace metals, the scope and need for enhancing the efficiency of the Q. ilex phytomass as an adsorbent of metals are presented.  相似文献   

15.
Rajasthan state in India is credited to cater more than 90% of total production of asbestos in this country, of which around 60% is processed there in unorganized sectors including milling and manufacturing of asbestos-based products. Unorganized asbestos units particularly mills showed unhealthy occupational conditions, therefore industrial hygiene study was carried out focusing on the prevalence of asbestos fibres in air at work zone area of asbestos milling units. Fibre levels were in the range of 2.00-5.09f/cm(3) and 4.07-15.60f/cm(3) in unorganized asbestos mills of Rajasthan located at Beawer and Deogarh districts, respectively. Like asbestos concentration, fibre type and length are also vital factors in the health risk assessment of industrial workers. Phase contrast and polarized light microscopic study of asbestos fibres showed their amphibole nature registering about 90% as tremolite and rest as anthophyllite. Fibre length measured micrometrically were sub-grouped in <10microm, 11-20microm, 21-30microm and >30microm. About 30-40% fibres belonged to sub-group <10microm. It is concluded that unorganized asbestos mills bear poor industrial unhygienic conditions reflected specifically from their manyfold higher fibre concentrations than the Indian and International standards. Poor industrial unhygienic conditions are attributable to obsolete milling technology, lack of pollution control devices and escape from regulatory control.  相似文献   

16.
Red mud (RM) is a strongly alkaline residue generated in enormous amounts worldwide from bauxite refining using the Bayer chemical process. RM is composed mainly of Fe, Ti and Al oxides and hydroxides, but it also contains an array of trace metals and metalloids at different concentrations. The purpose of this paper is to assess the potential mobility of metals in RM, with special emphasis on pH effect. The ‘operational’ distribution and leachability of metals within/from RM was studied by applying a sequential extraction procedure (SEP) and several leaching tests (rapid titration, equilibration acidification, batch leaching with acetic acid and also the toxicity characteristics leaching procedure (TCLP) and the DIN 38414-S4 procedures, used as reference methods) carried out at different pH, solid/liquid ratio, extraction period and type of acid (HCl or acetic acid). Chemical analysis showed that, in addition to the major metals Fe, Al and Ti, RM contains several trace metals, some of them (Cr, Cu and Ni) in concentrations exceeding the regulatory limits. SEP showed that a majority of the metals in the RM (between the 32.2?±?8.5 for Cd and 95.3?±?0.4 % for Ni) were found in the residual fraction, suggesting that they are not readily mobile under normal environmental conditions. Leaching tests performed at different pH showed that a significant fraction of the metals is mobilised from RM only under very strong acid conditions (pH?<?2), whereas Al is released in considerable amounts at pH?<?5.3. Among the trace metals, Cr requires special attention because of its relative high concentration in RM and the higher concentrations of this metal mobilised at low pH. The leaching tests using acetic acid showed that the standard TCLP largely underestimates the release of trace metals from RM, and therefore it is not advisable to evaluate the actual potential leaching of trace metals from this residue.  相似文献   

17.
The PM(2.5) concentration and its elemental composition were measured in the Cincinnati metropolitan area, which is characterized by intense highway traffic. The spatial and temporal variations were investigated for various chemical elements that contributed to the PM(2.5) fraction during a 1-year-long measurement campaign (December 2001-November 2002). The ambient aerosol monitoring was performed in 11 locations around the city during nine measurement cycles. During each cycle, four Harvard-type impactors were operating in parallel in specific locations to explore various factors affecting the PM(2.5) elemental concentrations. The sampling was performed during business days, thus assuring traffic uniformity. The 24-h PM(2.5) samples were collected on Teflon and quartz filters. Teflon filters were analyzed by X-ray fluorescence (XRF) analysis while quartz filters were analyzed by thermal-optical transmittance (TOT) analysis. In addition to PM(2.5) measurements, particle size-selective sampling was performed in two cycles using micro-orifice uniform deposit impactor; the collected fractionated deposits were analyzed by XRF. It was found that PM(2.5) concentration ranged from 6.70 to 48.3 mug m(-3) and had low spatial variation (median coefficient of variation, CV=11.3%). The elemental concentrations demonstrated high spatial variation, with the median CV ranged from 38.2% for Fe to 68.7% for Ni. For traffic-related trace metals, the highest concentration was detected in the city center site, which was close to a major highway. The particle size selective measurement revealed that mass concentration of the trace metals, such as Zn, Pb, Ni, as well as that of sulfur reach their peak values in the particle size range of 0.32-1.0 mum. Meteorological parameters and traffic intensity were not found to have a significant influence on the PM(2.5) elemental concentrations.  相似文献   

18.
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary–Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.  相似文献   

19.
Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment.  相似文献   

20.
Trace metal speciation and bioavailability in urban soils   总被引:19,自引:0,他引:19  
Urban soils often contain concentrations of trace metals that exceed regulatory levels. However, the threat posed by trace metals to human health and the environment is thought to be dependent on their speciation in the soil solution rather than the total concentration. Three inactive railway yards in Montréal, Québec, were sampled to investigate the speciation and bioavailability of Cd, Cu, Ni, Pb and Zn. Soil solutions were obtained by centrifuging saturated soil pastes. In the soil solutions, up to 59% of the dissolved Cd was in its free ionic form. For Cu, Pb and Zn, organic complexes were the predominant species. Over 40% of Ni was present as inorganic complexes if the solution pH exceeded 8.1. Multiple regression analyses showed that pH and total metals in soil were significantly correlated with the activities of free metal ions, except for Cd(2+), which only had a weak correlation with soil pH. Free, dissolved and total soil metals were tested for their ability to predict metal uptake by plants in the field. However, none of these metal pools were satisfactory predictors. The results indicated that in these urban soils, trace metals were mainly in stable forms and bioavailability was extremely low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号