首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Işik M  Sponza DT 《Chemosphere》2004,55(1):119-128
Decolorization and inhibition kinetic characteristics of two azo dyes namely Reactive Black 5 (RB 5) and Direct Brown 2 (DB 2) were investigated with partially granulated anaerobic mixed culture using glucose (3000 mg l(-1) COD) as carbon source and electron donor during batch incubation. Monod, zero-, first-, and second-order reaction kinetic models were tested in order to determine the most suitable rate model of substrate and color removal kinetic. The course of the decolorization and substrate removal process approximates to first-order kinetic model under batch conditions. Decolorization, and substrate removal were achieved effectively under test conditions but ultimate removal of azo dyes and substrate were not observed at high dye concentrations. Aromatic amine and volatile fatty acid accumulation were observed proportionally at a higher azo dye concentration. A competitive kinetic model that describes the anaerobic co-metabolism of increasing RB 5 and DB 2 dye concentrations with glucose as co-substrate has been developed based on the experimental data.  相似文献   

2.
在含有真菌G 1培养液中加入染料厂污水排放口的污泥样品 ,从发生快速脱色降解染料的混合培养液中分离出 2株染料脱色细菌L_1和L_2 ,经API鉴定系统鉴定 ,确定菌株L_1为Enterobactersp .,菌株L_2为Peudomonassp .。研究比较了单一和不同组合混合的真菌G_1菌株 (Penicilliumsp .)、细菌L_1菌株 (Enterobactersp .)和L_2菌株 (Pseu domonassp .)对偶氮染料红M - 3BE(C .I .ReactiveRed 2 41)和蒽醌染料艳蓝KN -R(C .1.ReactiveBlue 19)的去除情况 ,发现G - 1真菌和 2种细菌组合的共培养体系对 5 0mg/L红M - 3BE和艳蓝KN -R处理 5h去除率达 10 0 %和 97.9% ,并且是以脱色降解作用为主 ,建立了染料脱色降解菌的最佳组合 ;进一步测定了此最佳共培养体系对另外 13种不同结构染料的脱色降解 ,结果表明 ,除对蒽醌染料R - 478脱色降解较差外 ,对其他染料均可在lh— 3d被完全脱色降解 ,表现出脱色降解染料的广谱性 ;向培养 4d的共培养体系中依次加入 8种染料 ,菌体可对染料连续脱色 ,维持脱色能力达 8d左右  相似文献   

3.
The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths.  相似文献   

4.
Decolorization of synthetic dyes using a copper complex with glucaric acid   总被引:1,自引:0,他引:1  
Selected azo, acridine, triphenyl methane, anthraquinone and thiazine-based dyes were decolorized using a catalytic system consisting of Cu(II)/glucaric acid/H(2)O(2). More than 90% decolorization was obtained with 100 ppm Acridine Orange, Azure B, Chicago Sky Blue, Crystal Violet, Methyl Orange, Poly B-411, Reactive Black 5, Reactive Blue 2, and Remazol Brilliant Blue R within 24 h. Seventy to eighty percent decolorization was achieved within the first 6 h. The decolorizaton was not affected by pH. The involvement of hydroxyl radicals produced in the system in the decolorization of the dye molecules was confirmed by electron spin resonance study.  相似文献   

5.
Certain aromatic amines generated by the decolorization of some azo dyes are not removed substantially by conventional anaerobic–aerobic biotreatment. These aromatic amines are potentially toxic and often released in the wastewater of industrial plants. In this study, the fate and transformation of the naphthylaminesulfonic azo dye Reactive Black 5 (RB5) during different phases of a sequencing batch reactor were investigated. The major products of RB5 decolorization during the anaerobic phase include 2-[(4-aminophenyl)sulfonyl]ethyl hydrogen sulfate (APSEHS) and 1-2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). During the aerobic phase, APSEHS was hydrolyzed and produced 4-aminobenzenesulfonic acid, which was further degraded via dearomatization. TAHNDS was transformed rapidly via auto-oxidation into TAHNDSDP-1 and TAHNDSDP-2, which were not further removed by the activated sludge during the entire 30-day aerobic phase. In contrast, different behaviors of TAHNDS were observed during the anoxic phase. The transformation of TAHNDS was initiated either by deamination or desulfonation reaction. TAHNDS was then converted into 3,5-diamino-4-hydroxynaphthalene-2-sulfonic acid, which was subsequently removed via ring cleavage reaction under aerobic condition. In conclusion, complete degradation of TAHNDS by activated sludge occurs only during anoxic/aerobic processes instead of the conventional anaerobic/aerobic processes.  相似文献   

6.
A two stage anaerobic/aerobic bacterial process was used to decolorize and partially mineralize a reactive vinyl sulfone diazo dye C.I. Reactive Black 5 (RB5) in a synthetic wastewater. Since the anchor group of reactive dyes reacts during the dyeing process, the effect the degree of hydrolysis of the vinyl sulfone dye had on decolorization, mineralization and toxicity in each stage was investigated. An overall color removal of approximately 65% was found for both the fully and partially hydrolyzed dye. Partial mineralization of the fully hydrolyzed RB5 was achieved in the two stage rotating disc reactors. While the anchor group metabolite p-aminobenzene-2-hydroxyethylsulfonic acid (p-ABHES) was mineralized, an oxidized form of the center metabolite (1,2-ketimino-7-amino-8-hydroxynaphthalene-3,6-disulfonic acid) remained in the aerobic stage effluent, causing the effluent to be colored although no RB5 was present. Partially hydrolyzed dye in the influent with vinyl forms of the anchor group caused cessation of biogas production and a reduction in decolorization efficiency in the anaerobic stage. No evidence for mineralization of the partially hydrolyzed dye or its metabolites was found. A method for evaluating dye mineralization using lumped parameters is presented.  相似文献   

7.
中温(35±1)℃条件下,采用上流式厌氧污泥床(upflowanaerobicsludgebed,简称UASB)反应器处理了含蒽醌类-活性艳蓝(c.I.ReactiveBlue5,简称K—GR)或偶氮类-活性艳红(C.I.ReactiveRed20,简称KD-8B;C.I.ReactiveRed2,简称X-3B)模拟染料废水,重点研究了回流比对染料脱色率和COD去除率的影响,在最佳回流比的条件下,探讨HRT(hydraulicretentiontime)对脱色的影响和不同结构染料的脱色效果,并初步分析了脱色机理。结果表明,适宜的回流比有利于提高系统的脱色率;控制回流比和HRT分别为2和24h,当模拟废水中染料的浓度为100mg/L时,COD去除率和脱色率分别为90%~96%和85%~92%;蒽醌和偶氮类染料的脱色是通过偶氮键和葸醌共轭结构的断裂来实现的。  相似文献   

8.
A photocatalytic process based on immobilized titanium dioxide was used to treat crude solutions of azo, anthraquinone and phthalocyanine textile dyes. In addition, the process was applied to the treat autoxidized chemically reduced azo dyes, i.e. representatives of recalcitrant dye residues after biological sequential anaerobic-aerobic treatment. Photocatalysis was able to remove more than 90% color from crude as well as autoxidized chemically reduced dye solutions. UV-absorbance and COD were also removed but to a lower extent (50% in average). The end products of photocatalytic treatment were not toxic toward methanogenic bacteria. The results demonstrate that photocatalysis can be used as a pre- or post-treatment method to biological anaerobic treatment of dye-containing textile wastewater.  相似文献   

9.
We tried to decolorize mixtures of four reactive textile dyes, including azo and anthraquinone dyes, by a white-rot basidiomycete Phanerochaete sordida. P. sordida decolorized dye mixtures (200 mg l-1 each) by 90% within 48 h in nitrogen-limited glucose-ammonium media. Decolorization of dye mixtures needed Mn2+ and Tween 80 in the media. Manganese peroxidase (MnP) played a major role in dye decolorization by P. sordida. Decolorization of dye mixtures by P. sordida was partially inhibited by polyvinyl alcohol (PVA) that wastewaters from textile industries often contain. This was caused by an inhibitory effect of PVA on the decolorization of Reactive Red 120 (RR120) with MnP reaction system. Second addition of Tween 80 to the reaction mixtures in the presence of PVA improved the decolorization of RR120. These results suggest that PVA could interfere with lipid peroxidation or subsequent attack to the dye.  相似文献   

10.
以沼泽红假单胞菌W1为研究对象,考察了厌氧条件下硫酸盐还原对活性黑5(Reactive Black 5,RB5)和直接黄11(Direct Yellow 11,DY11)生物脱色的影响。结果表明,硫酸盐本身对2种染料脱色无明显影响,而硫酸盐的还原产物———硫化物能通过氧化还原介体使2种染料化学脱色,其脱色过程能在3 min内迅速完成。在无介体加入的情况下,硫化物能够通过RB5自身产生的介体加速RB5的脱色;而对于不能产生氧化还原介体的DY11,硫化物对其脱色无明显影响。硫化物经染料氧化后形成的硫单质能够被菌株W1重新转化为硫化物,继续还原染料。  相似文献   

11.
This study investigated the degradation of anthraquinone reactive dye C.I. Reactive Blue 19 (RB-19) with initial concentration of 100 mg L−1 in aqueous solution by ozone oxidation. The results of UV/VIS and FTIR spectra showed that the anthraquinone structures, nitrogen linkages and amino groups of RB-19 were destroyed under direct ozone reaction. The identification by LC–MS and GC–MS analyses indicated that some organic acids (e.g., phthalic acids) and 1,3-indanone could be the primary degradation products, respectively. The Microtox toxicity of the ozonated RB-19 solution initially increased but subsequently decreased when ozonation time increased. This detoxification accompanied biodegradability enhancement revealed by BOD/COD ratio increasing from 0.15 to 0.33 after 10 min of ozonation.  相似文献   

12.
Copper-ligand complex for the decolorization of synthetic dyes   总被引:1,自引:0,他引:1  
Verma P  Baldrian P  Gabriel J  Trnka T  Nerud F 《Chemosphere》2004,57(9):1207-1211
The reaction system containing Cu(II), hydrogen peroxide and D-arabinono-1,4-lactone was found to be effective in the decolorization and reduction of toxicity of azo, thiazine-, triphenylmethane- and anthraquinone-based synthetic dyes. More than 85% decolorization was obtained with 100ppm Acridine Orange, Azure B, Chicago Sky Blue 6B, Crystal Violet, Evans Blue, Poly B-411, Reactive Blue 2, Reactive Blue 5, and Remazol Brilliant Blue R incubated for 24h in the presence of 10mM CuSO(4), 20mM D-arabinono-1,4-lactone and 80 mM H(2)O(2). The rate of decolorization was not affected by pH in the range of 3-9. The rapid decolorization was accompanied by a fast decomposition of H(2)O(2) in the reaction mixture and by a fast production of hydroxyl radicals.  相似文献   

13.
In this study, advanced oxidation process utilizing Fenton's reaction was investigated for the decolorization and degradation of two commercial dyes viz., Red M5B, Blue MR and H-acid, a dye intermediate used in chemical industries for the synthesis of direct, reactive and azo dyes. Effect of Fe2 +, H2O2, pH, and contact time on the degradation of the dyes was studied. Maximum color and COD removal was obtained for Red MSB, H-acid and Blue MR at 10-25 mg/l of Fe2+ dose and 400-500 mg/l of H2O2 dose at pH 3.0. The initial oxidation reaction was found to fit into first order rate kinetics and the rate of oxidation of H-acid was higher than the other dyes. Release of chloride and sulfate from the Fenton's treated Red M5B dye and sulfate from H-acid and Blue MR indicates that the dye degradation proceeds through cleavage of the substituent group.  相似文献   

14.
Environmental Science and Pollution Research - This study deals with the toxicity of the treated solutions of two types of dyes, namely, the anthraquinonic Reactive Bleu 19 dye (RB19) and the...  相似文献   

15.
The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < pH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbO(x) (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at pH 2.2 and potential of +2.4V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 M, pH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1h of electrolysis the results indicated total color removal and 37% of mineralization.  相似文献   

16.
The environmental problems associated with textile activities are represented mainly by the extensive use of organic dyes. A great number of these compounds are recalcitrant and shown carcinogenic or mutagenic character. In this work three processes were studied for degradation of an anthraquinone dye (C.I. reactive blue-19). The ozonation process leads to complete decolorization with a very short reaction time; however, effective mineralization of the dye was not observed. The enzymatic process promotes quick decolorization of the dye; nevertheless, maximum decolorization degrees of about 30% are insignificant in relation to the decolorization degree achieved by the other processes. The best results were found for the photocatalytical process. The use of ZnO or TiO2 as photocatalysts, permits total decolorization and mineralization of the dye with reaction times of about 60 min.  相似文献   

17.
Verma P  Baldrian P  Nerud F 《Chemosphere》2003,50(8):975-979
The cobalt(II)/ascorbic acid/hydrogen peroxide system was used for decolorization of azo, acridine, anthraquinone, thiazine and triphenylmethane dyes. More than 90% decolorization was obtained with all dyes except Remazol Brilliant Blue R (75%). With other transition metals the system was less efficient. With copper, higher concentration and prolonged incubation time was necessary to obtain the same extent of decolorization. The rate of decolorizaton was not affected by pH in the range of 3-9. The reaction is very fast, with more than 90% decolorization being attained within 15 min. The system produces hydroxyl radicals which are responsible for the decolorization.  相似文献   

18.
Toxicity of two azo dyes (Reactive Orange 16 (RO16); Congo Red (CR)) and two anthraquinone dyes (Remazol Brilliant Blue R (RBBR); Disperse Blue 3 (DB3)) were compared using bacterium Vibrio fischeri, microalga Selenastrum capricornutum and ciliate Tetrahymena pyriformis. The following respective endpoints were involved: acute toxicity measured as bacterial luminescence inhibition, algal growth inhibition, and the effects on the protozoa including viability, growth inhibition, grazing effect and morphometric effects. In addition, mutagenicity of the dyes was determined using Ames test with bacterium Salmonella typhimurium His(-). DB3 dye was the most toxic of all dyes in the bacterial, algal and protozoan tests. In contrast to other dyes, DB3 exhibited mutagenic effects after metabolic activation in vitro in all S. typhimurium strains used. Of the methods applied, the algal test was the most sensitive to evaluate toxicity of the dyes tested.  相似文献   

19.
研究了游离细胞与载体吸附培养、不同载体材料对Phanerochaete chrysosporium进行连续染料脱色及产酶能力的影响。结果表明,P.chrysosporium可在载体上良好生长,甚至生长到载体内部。木屑、玉米芯、花生壳3种载体材料中,以木屑载体吸附培养物的持续脱色和产酶效果最佳,该培养物经三轮连续脱色后对染料RB5仍能达到最高95%的脱色率,并产生596 U/L锰依赖过氧化物酶(MnP)和1 326 U/L木质素过氧化物酶(LiP),对染料的持续脱色和产酶能力明显优于游离细胞培养物。  相似文献   

20.
采用湿法制备了高铁酸钾(K2FeO4)氧化剂,研究了其对染料活性艳红X-3B(X-3B) 和分散蓝2BLN(2BLN)在不同pH条件下的脱色效果,并对Al2 (SO4)3、K2FeO4及O3对活性及分散染料的脱色效果进行了比较。结果表明:高铁酸钾对活性及分散染料的脱色效果明显, X-3B脱色率随pH的增加不断提高,2BLN脱色率在pH 6~10范围内无明显变化,在pH=5时达到最大值。在X-3B及2BLN浓度同为100 mg/L,pH分别为10、5, K2FeO4浓度分别为100 mg/L和200 mg/L时,BLN及X-3B的脱色率分别达到92.3%和87.3%。在相同条件下,K2FeO4对活性艳红X-3B的脱色效果好于Al2(SO4)3和O3; 而K2FeO4对分散蓝2BLN的脱色效果虽比Al2 (SO4)3稍差,但比臭氧的脱色效果要好。同时还研究了K2FeO4对活性及分散染料的脱色机理,结果表明: 高铁酸钾对X-3B的脱色依赖于K2FeO4的氧化作用,而对的2BLN的脱色则以絮凝为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号