首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
针对大量CO_2所带来的环境问题,构建BECR(Bioelectrochemical catalysis reactor)反应系统,将电化学还原与微生物催化还原相结合,转化CO_2合成有机化合物.从牛粪中分离筛选出产氢菌(Clostridium sp.S1),确定最优产氢条件.将筛选好的菌种接入BECR电催化转化反应器,通入CO_2,外加恒定阴极电势,检测合成的有机化合物.结果表明,反应装置接入电化学工作站进行CV测试时,在-0.7 V时出现还原峰发生还原反应,恒电位仪恒定阴极电势,合成的化合物为甲醇和乙酸.在24 h时甲醇和乙酸的积累量达到最大分别为3.096 mmol·L~(-1)和2.01 mmol·L~(-1).在电化学和微生物的共同作用下,实现了对CO_2的还原过程,并合成了有机化合物.  相似文献   

2.
生物电化学系统固定二氧化碳同时产生乙酸和丁酸   总被引:1,自引:0,他引:1  
生物电化学系统用于微生物电合成,可原位利用污水中的能量将二氧化碳固定,并生产有机物.通过构建生物电化学系统,利用混合菌作电催化剂还原二氧化碳生成乙酸和丁酸.设定阴极电势-0.75 V(vs Ag/AgCl),10 d的反应周期内,乙酸最大积累浓度为251.89 mg/L;丁酸从第3天开始生成,最大积累浓度为89.42 mg/L.系统总电子回收率可达85.04%.电化学分析表明生物阴极具有良好的催化活性.PCR-DGGE分析生物阴极主要菌群为醋酸杆菌属(Acetobacterium)和拟杆菌属(Bacteroides).本研究证明了生物阴极具有以二氧化碳为原始底物合成乙酸,并进一步延伸碳链合成中链脂肪酸的能力,对进一步开发微生物电合成技术具有重要参考价值.  相似文献   

3.
为探究二氧化铅在微生物燃料电池(Microbial fuel cell,简称MFC)中的还原及对产电性能的影响,采用电沉积法成功制备了钛基二氧化铅(PbO2/Ti),并将其作为阴极材料应用于双室MFC.二氧化铅的价态、晶型、形态特征以及电化学特性分别采用X射线光电子能谱(XPS)、X射线衍射光谱(XRD)、扫描电子显微镜(SEM)和循环伏安扫描(CV)进行分析,MFC的产电能力通过COD的去除、输出电压和极化曲线进行表征.结果显示,在以PbO2/Ti为阴极的MFC中COD的降解率可以达到87.68%,明显高于纯钛板的对照(71.4%).当外阻为1 000Ω时,最大输出电压达到760 mV,约为对照的30倍.最大功率密度达379 mW m–2,相应的电流密度为1 185 mA m–2.同时,PbO2被还原为PbO和Pb3(PO4)2.由此可见,二氧化铅由于其具有的强氧化性可作为廉价高效的阴极材料应用于MFC,从而大大提高MFC产电能力.  相似文献   

4.
采用清远电子垃圾拆解区附近河流底泥作为菌源,研究了四溴双酚A(TBBPA)在不同厌氧条件下的还原脱溴,并用驯化微生物好氧降解双酚A(BPA).实验发现,添加电子供体和产甲烷条件下,TBBPA分别在117 d和42 d实现100%去除.硫酸盐条件下,TBBPA在观察期内(160 d)的去除率为63%.驯化微生物可以将BPA矿化,并在pH 8、34℃、接种量10%条件下,40 mg·L~(-1)BPA在6 d内可被完全降解,具有最优的降解效果.BPA经对羟基苯乙酮、乳酸而最终转化为CO_2和水.厌氧-好氧微生物作用可实现TBBPA的彻底降解,为受TBBPA污染区域的原位修复提供了科学基础.  相似文献   

5.
为提高酿酒废水产甲烷效率,采用新型单室无膜微生物电解池(MEC),以酿酒废水为基质,考察不同外加电压(0.4 V、0.8 V、1.2 V)和传统消化(AD)对COD的去除、甲烷产生速率和能量回收的影响.结果表明,MEC外加电压为0.8 V时,COD的去除负荷达7.09±0.74 kg m~(-3)·d~(-1),较厌氧消化AD(4.19(±0.5)kg m~(-3) d~(-1))增加了69%.外加电压显著促进了乙醇的降解,0.4 V、0.8 V、1.2 V的MEC乙醇降解速率分别为121.84.17±19.3 mgL~(-1_ h~(-1)、256.45±18.04 mgL~(-1) h~(-1)、625.57±81.76 mgL~(-1) h~(-1),分别是AD(88.02±15.13 mg L~(-1) h~(-1))的1.38倍、2.91倍和7.1倍.外加0.8 V,甲烷产生速率达到2019.78±76.41 mL L~(-1) d~(-1),与AD(851.91±48.31 mLL~(-1) d~(-1))相比,增加了1.37倍;总能量回收率达到77.75%±0.88%,是AD(39.59%±2.31%)的1.97倍.循环伏安扫描(CV)发现MEC的碳毡在-0.270 V附近和0.035 V附近存在明显的还原峰和氧化峰.菌群高通量测序表明MEC的优势菌群为Methanothrix sp.和Geobacter sp.,其在混合菌群中的相对丰度分别为38.4%和12.83%,AD对应菌群的相对丰度仅为8.72%和1.21%.上述结果表明新型微生物电解池可显著促进酿酒废水的处理并提高甲烷产生速率和能量回收率.  相似文献   

6.
微生物电解池(microbial electrolysis cell,MEC)在污染物去除、CO_2捕获与碳转化以及可再生能源的生物合成等方面具有巨大潜力,对于缓解能源危机与温室效应具有重要指导意义.尽管目前在作用原理、参数优化和机制探索方面有了重大进展,但MEC从概念设计到技术转化仍面临着诸多难题和巨大挑战.本论文介绍了基于MEC的CO_2电甲烷化技术的基本理论与最新研究进展,并对电甲烷化过程中膜面污染形成、生物阴极电活性功能菌富集及其胞外电子传递机制等进行了系统阐述,以期为MEC在CO_2电甲烷化的工程应用提供理论和技术参考.  相似文献   

7.
王染  黄毅  刘喜梅  余博 《环境化学》2020,39(3):755-761
以五水硝酸铋和钨酸钠为原料水热法合成规整的三维花状直径约2.5—3.5μm的Bi_2WO_6微球,通过简单原位光还原过程合成了一系列Ag/Bi_2WO_6复合材料.紫外可见漫反射光谱表明Ag/Bi_2WO_6相比于纯Bi_2WO_6微球在可见光区域的光吸收边显著红移.在可见光照射下,对所制备的样品的光催化降解罗丹明B活性进行了评价.结果表明,Ag/Bi_2WO_6光催化活性随着光还原时间增加,先增加然后降低,光还原时间为20 min合成的Ag/Bi_2WO_6光催化活性最佳,40 min对罗丹明B的降解率已达到99.2%,反应速率常数为纯Bi_2WO_6的3.60倍.增强的光催化活性归因于银的引入导致光吸收范围的增加和光生载流子有效分离的协同效应.  相似文献   

8.
传统厌氧消化基质转化慢,甲烷产率和能量回收效率较低.本研究模拟厌氧酸化产生的短链脂肪酸(SCFAs)废水,在批式条件下,利用单室无膜微生物电解池辅助厌氧消化(MEC-AD)产甲烷,考察不同外加电压(0.4 V、0.6V、0.8 V)对底物降解、甲烷产生和能量回收效率的影响.结果表明,进水化学需氧量(C OD)浓度约为7 000 mg/L时,COD的平均去除负荷由AD的(3.34±0.09)k g m-3 d~(-1)提高到MEC-AD的(6.86±0.04)kg m-3 d~(-1)(外加0.8 V),增加了1.06倍.外加电压与脂肪酸组分的降解呈正相关,即随着外加电压的升高,底物各SCFA降解速率加快,此时相应的甲烷含量、产量明显提高.当外加电压为0.8 V时,混合脂肪酸中乙酸、丙酸及丁酸的降解速度较AD分别提高了98.25%、107.14%、54.21%,甲烷的含量达90.11%;甲烷的产率为2.63 L L~(-1) d~(-1),较AD提高了157.84%.以基质化学能、电能和产生的甲烷来计算总能量回收效率,其中AD为73.51%;加电0.4 V、0.6 V、0.8 V时分别为93.44%、88.99%、93.41%.综合脂肪酸降解、甲烷产生及能量回收情况,确定外加0.8 V为最优条件.循环伏安扫描分析发现,与AD相比,MEC-AD在-0.3V处存在明显产甲烷还原峰.高通量测序结果显示,MEC-AD中阳极优势菌群为Methanosaeta sp.和Geobacter sp.,其相对丰度比分别为36.43%和13.35%;而AD中相应比例仅为24.46%和0.99%.由此可知MEC-AD中可能存在直接的种间电子传递(DIET)产甲烷途径,该途径是甲烷含量和产量提升的重要原因.综上,以微生物电解池辅助厌氧消化能有效促进底物降解,且获得高纯度、高产量的甲烷,具有良好的应用前景.  相似文献   

9.
树枝状微纳米银催化剂对甲醛的电化学检测   总被引:2,自引:0,他引:2  
在Ag(NH3)2+溶液中,在钛基体上电沉积出具有新颖树枝状结构的微纳米银材料,探讨了K+或Ca2+的存在对这种树枝状微纳米银材料的影响.结果表明,在Ca2+存在下形成了尺寸更小的树枝状银(Ag/Ca2+/Ti),研究了这种钛基树枝状微纳米银电极(Ag/Ca2+/Ti)在碱性溶液中对甲醛氧化的电催化活性.循环伏安结果表明,在0.1 mol.L-1NaOH溶液中,甲醛氧化的起始电位为-0.83 V,阳极氧化电流密度随甲醛浓度的增大而明显增加;-0.5 V时的恒电位阶跃研究表明,甲醛浓度和它的稳态氧化电流密度呈现良好的线性关系,甲醛检测灵敏度为1.25 mA.cm-2(mmol.L-1)-1,检测下限18.9μmol.L-1,且乙醛、乙醇和正丁醇的干扰较小.结果表明,电沉积制备的这种细树枝状微纳米银电极(Ag/Ca2+/Ti)对甲醛氧化具有强的电催化活性,且对甲醛检测具有高灵敏度和较好的选择性,有望作为甲醛检测的电化学传感器.  相似文献   

10.
传统电Fenton反应通过电化学方法产生H2O2,需外加电源,能耗大,成本高。基于MFC持续产电并可驱动阴极电Fenton系统运行的特点,本研究以铁复合碳毡为阴极电极,构建了微生物燃料电池驱动的生物电Fenton系统,探讨了铁复合碳毡及阴极pH对偶氮染料(金橙I号)脱色的影响。结果发现,铁复合碳毡脱色效果均好于普通碳毡。当pH为3时,4 h后Fe@Fe2O3/CF阴极脱色率达91.7%,明显高于α-FeOOH/CF和FeAlSi/CF的83.4%和69.9%。扫描电镜发现,Fe@Fe2O3以微粒状结构附着于碳毡表面,比表面积增大,可能是Fe@Fe2O3/CF脱色性能改善的主要原因。研究表明,低pH有利于生物电Fenton反应的进行。当pH由3.0提高至5.0时,Fe@Fe2O3/CF阴极脱色率降低至47.1%。阴极室染料脱色与阳极室废水TOC削减呈线性相关,说明阳极生物氧化是驱动阴极生物电Fenton反应的原动力。本研究提供了一种能自我维持、无需外源电力的生物电Fenton系统,为印染废水脱色提供了崭新的途径。  相似文献   

11.
对氯乙烯生物降解过程中不同氧化还原条件的氢浓度特征进行了研究 ,并揭示氢浓度、氧化还原条件、以及氯乙烯降解之间的关系 .结果表明 ,反硝化、锰还原、铁还原、硫还原、产甲烷、PCE/TCE脱氯、cis DCE脱氯以及VC脱氯的氢浓度特征值分别为 0 1— 0 4nmol·l- 1,0 1— 2 0nmol·l- 1,0 1— 0 3nmol·l- 1,1 5— 4 5nmol·l- 1,5— 1 3nmol·l- 1,0 6— 0 9nmol·l- 1,1 0— 2 5nmol·l- 1和 >1 0nmol·l- 1.水环境的还原性愈强 ,对应的氢浓度特征值愈大 .此外 ,PCE/TCE脱氯表现出与反硝化及铁、锰还原相近的氢浓度特征 ,而cis DCE和VC脱氯的氢浓度特征分别类似于硫还原和产甲烷 .强还原 (如产甲烷 )条件有利于氯乙烯的脱氯 ,当环境中氢浓度水平大于 2nmol·l- 1时cis DCE/VC脱氯和产甲烷过程可同时发生 .  相似文献   

12.
合成气(主要包括CO、H_2和CO_2)通过生物转化生产高附加值的生物燃料和化学品已引起人们广泛关注,微生物菌群作为生物转化的酶催化剂对合成气发酵产物组成和效率十分关键.通过富集得到高温条件下分别稳定转化CO、甲酸钠和合成气的厌氧菌群,探究CO与甲酸钠转化菌混培物和合成气转化菌发酵合成气生成乙酸的能力,并分析其微生物群落结构.结果显示,CO-甲酸钠转化菌混培物与合成气转化菌在合成气发酵前期主要进行CO的产氢反应生成H_2和CO_2以及同型产乙酸反应生成乙酸,CO利用率为100%,CO反应速率分别为6.93和6.34 mmol L~(-1)d~(-1);随后同型产乙酸菌利用H_2和CO_2继续合成乙酸,两者的乙酸最大累积量分别为9.11 mmol/L和8.01 mmol/L.CO-甲酸钠转化菌混培物主要菌群为Thermoanaerobacterium、Romboutsia、Ruminococcus、Clostridium、Eubacterium、Moorella和Desulfotomaculum属,合成气转化混菌则主要含有Romboutsia、Thermoanaerobacterium、Moorella、Eubacterium、Acetonema和Clostridium属,其中同型产乙酸菌广泛分布于Ruminococcus、Clostridium、Eubacterium、Moorella和Acetonema属.本研究表明复配CO和甲酸钠转化菌可用于合成气高温发酵产乙酸,且转化能力优于合成气转化菌,结果可为合成气混菌发酵提供微生物资源和技术参考.  相似文献   

13.
实验构建生物阴极双室微生物燃料电池,探究在微氧条件下曝气量对其产电性能和阴极脱氮的影响.以乙酸钠为碳源,氯化铵为氮源.实验在25℃温度下,阴极持续曝气,并控制反应器内为微氧状态,富集培养短程硝化反硝化菌群.实现了在特定曝气量条件下生物阴极短程硝化反硝化脱氮.实验结果表明,在曝气量为1.64 mL·min-1的条件下,短程硝化反硝化脱氮效果最好.亚硝态氮积累率为81.70%,总氮去除率达到69.66%,最大稳定电压达0.47 V左右,库伦效率为43.8%,产电效能较好.针对实际污水处理开展相关实验,MFC阴极短程硝化反硝化总氮去除率可达到81.93%,优于全程硝化反硝化.在短程硝化反硝化的微生物群落中,Betaproteobacteria纲和Thauera菌属在短程硝化反硝化中得到了有效的富集,有利于生物脱氮,并且Nitrosomonas菌是主要的氨氧化菌属.  相似文献   

14.
王珊琳  朱维晃  郑飞  查雪聪 《环境化学》2019,38(9):2093-2100
采用恒电位法制备了蒽醌二磺酸钠(AQS)掺杂的聚吡咯(PPy)修饰石墨板阴极.石墨板阴极经修饰后,电化学活性得到显著提高,其电子转移内阻及电子转移量分别为未修饰的约50%和5.7倍.实验进一步考察了阴极电位、初始pH值以及Fe~(2+)含量对罗丹明B降解实验的影响,结果表明,在阴极电位为-0.1 V,pH值为3.0,Fe~(2+)浓度为0.2 mmol·L~(-1)的条件下,60 min内对罗丹明B的降解率最高可达85.76%,且长时间运行后,降解效果重复性较好.结合不同条件下的过氧化氢产量和自由基变化淬灭实验,推断了降解过程的机理,即AQS/PPy修饰的石墨板电极,有利于分子氧在电极表面被催化还原为H_2O_2,和体系中Fe~(2+)产生羟基自由基,故罗丹明B降解是以羟基自由基为主导的电芬顿反应过程.  相似文献   

15.
近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明:(1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol?d~(-1),显著高于对照处理的0.012 mmol?d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol?d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol?d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。  相似文献   

16.
UV-B辐射增强对整个农业生态系统产生不同程度的影响,为探讨不同UV-B辐射增幅对稻田土壤碳转化和温室气体排放的影响,在元阳梯田稻田原位种植农家水稻品种白脚老粳,通过人工模拟不同UV-B辐射增幅(0、2.5、5.0、7.5 k J·m~(-2)),研究不同UV-B辐射增幅对水稻生长期稻田土壤碳转化酶活性、活性有机碳含量和CH_4、CO_2、N_2O排放的影响。结果表明,5.0 k J·m~(-2) UV-B辐射处理导致稻田土壤纤维素酶活性显著增加,增幅范围为15.4%—37.7%;而7.5 k J·m~(-2) UV-B辐射导致土壤碳转化酶(纤维素酶、β-葡萄糖苷酶、多酚氧化酶和蔗糖酶)活性显著降低。UV-B辐射增强导致土壤溶解性有机碳含量显著增加,而易氧化有机碳和微生物量碳含量减少。3个强度的UV-B辐射增幅处理均使稻田CH_4排放量显著减少,降幅范围为7.5%—30.6%;5.0 k J·m~(-2) UV-B辐射处理显著增加稻田CO_2、N_2O排放量,而7.5 k J·m~(-2) UV-B辐射导致稻田CO_2、N_2O排放降低;综合而言,UV-B辐射增强导致稻田3种温室气体的全球增温潜能降低。此外,土壤中多酚氧化酶活性与微生物量碳、易氧化有机碳含量呈显著正相关(P0.05),CH4排放通量与微生物量碳含量呈极显著正相关(P0.01)。可见,随UV-B辐射增强稻田土壤多酚氧化酶活性降低,进而减少易氧化有机碳和微生物量碳含量,最终导致稻田CH_4排放减少、CO_2和N_2O排放增加。  相似文献   

17.
油藏厌氧微生物研究进展   总被引:6,自引:0,他引:6  
地下深层油藏是独特的缺氧环境,目前还没有直接的微生物学证据表明油藏中存在真正意义上的“本源微生物”,但经注水开发后的油藏中确实蕴藏着复杂的微生物区系.油藏性质决定了油藏厌氧微生物特殊的群落结构,而油藏微生物的作用也可以改变油藏的理化及地质学特性.油藏中厌氧微生物按生理类群主要可分为发酵细菌、硝酸盐还原菌、铁还原菌、硫酸盐还原菌和产甲烷古菌.本文综述了国内外近年来油藏微生物学的研究进展,简述了微生物分子生态学在油藏微生物学研究中的应用,并对当前的研究提出了一些思考.图1参37  相似文献   

18.
腐殖质氧化还原和电子转移特性研究进展   总被引:6,自引:0,他引:6  
腐殖质在无氧和有氧条件下都具有一定的氧化还原能力,其氧化还原能力与氧化还原电势有关,而腐殖质的氧化还原电势受芳香度、取代基类型、取代位置等因素影响.除氧化还原能力外,腐殖质还能介导电子转移,其电子转移能力受腐殖质结构和所处环境两大因素影响.水体腐殖酸比土壤和沉积物腐殖酸具有相对较小的电子接受能力(EAC)和较大的提供电子能力(EDC);p H、温度、光照、氧气条件和微生物活动等因素均对腐殖质氧化能力和电子转移能力具有重要影响.腐殖质可以介导重金属和有机污染物的还原降解,不同重金属还原反应效率差异较大,其中Fe(Ⅲ)盐还原速率最高;有机污染物降解速率从大到小为六氯乙烷(HCE)>四氯化碳>三溴甲烷.目前在腐殖质氧化还原特性和电子转移能力研究中还存在诸多不足,需要广大学者做进一步探究.  相似文献   

19.
为了解煤层中产甲烷菌的生理生化特性,结合厌氧培养箱和平板划线分离技术从山东兖煤菏泽能化公司赵楼煤矿距离地表936 m处坑道顶板取得40℃煤层水样品中微生物进行富集分离纯化.结果表明:在该条件下存在产甲烷微生物,并分离得到一株产甲烷菌株M-3,该菌株呈短杆状,菌体大小约(1.0-2.0)μm×0.5μm;革兰氏染色显阳性;在平板上生长出圆形黄色菌落,边缘光滑整齐;可以利用乙酸、甲酸、甲醇和H2+CO2(V/V=2:1)作为唯一碳源生长;最适生长温度为45℃;对酸碱具有良好的适应性,中性条件下甲烷产量最多;最适NaCl浓度为0.2-0.6 mol L-1.对菌株M-3的16S rRNA基因序列同源性分析表明该菌株与Methanobacterium bryantii同源性高达99%,G+C含量32.9%.本研究通过形态、生理生化特性以及16S rRNA分析,鉴定菌株M-3为M.brytantii.  相似文献   

20.
为探求不同形态水葫芦和污泥联合厌氧消化产沼气性能,在中温35±1℃条件下,设置了2个不同的TS浓度(TS=6%和8%),采用不同形态的水葫芦(水葫芦段、水葫芦浆、水葫芦渣、水葫芦粉和水葫芦汁)与污泥进行联合厌氧消化实验.结果表明,水葫芦和污泥联合厌氧消化的累积产甲烷量均高于对照组;添加水葫芦处理的累积产甲烷量从大到小依次为水葫芦渣水葫芦浆水葫芦段水葫芦粉水葫芦汁,水葫芦渣处理的累积产甲烷量比水葫芦汁提高62.5%(TS=6%)和84.5%(TS=8%);系统TS浓度为8%时,各处理的TS甲烷产率均高于TS浓度为6%的结果,且水葫芦渣和污泥联合厌氧消化的产甲烷性能最好,表明水葫芦的压滤和粉碎有助于提高厌氧消化的产甲烷潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号