首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
从大曲中分离到了1株降解生淀粉能力较强的黑曲霉Aspergillusniger(6#).固体发酵酶活可达2461U/g,RDA值为21.47%;液体发酵酶活可达353U/mL,RDA值为20.30%.以6#菌为实验材料,进一步考察了氮源、碳源及pH对生淀粉糖化酶形成的影响.实验结果表明,无机氮源NaNO3较有机氮源蛋白胨更有利于生淀粉糖化酶的形成;pH是影响生淀粉糖化酶形成的重要因素,低pH会阻遏生淀粉糖化酶的形成;玉米粉和麦芽糖较其它碳源更有利于生淀粉糖化酶的形成.图4表2参12  相似文献   

2.
红豆杉内生真菌发酵培养基和原生质体制备酶系统的筛选   总被引:3,自引:0,他引:3  
在对红豆杉内生真菌(Ozoniumsp.)适生碳源、氮源和生长情况研究的基础上,通过正交试验筛选了其发酵培养基和原生质体制备的酶系统;用L9(34)安排了四因素三水平并考虑交互作用的正交试验,对实验结果进行了分析.结果表明,最优的发酵培养基为果糖1%、蔗糖1%、蛋白胨0.2%、酵母粉0.5%、KH2PO40.5%、MgSO4·7H2O0.3%、VB10.001%;分离原生质体的最优酶系统为1.5%溶壁酶 0.5%蜗牛酶 1.5%纤维素酶 1.0%溶菌酶;用此酶系统在30℃条件下酶解3h,原生质体的产量达6.55×107个/mL酶液;经荧光素二醋酸酯(FDA)染色评估原生质体活力,表明该条件下分离的原生质体活力较高,原生质体的再生率为2.56%.该研究为利用生物技术手段改良紫杉醇生产菌奠定了基础.图6表4参32  相似文献   

3.
2,3-丁二酮是一种常用的安全食品添加剂,为了提高微生物发酵中菌株的丁二酮产量,从泡菜水样品中分离筛选出一株野生型高产丁二酮菌株,并进行紫外诱变选育以及发酵条件优化.筛选获得高产丁二酮野生型乳酸菌株(1)-2,产量为67.02 mg/L,经16S r DNA分子鉴定为植物乳杆菌(Lactobacillus plantarum).紫外诱变获得高产丁二酮突变株U13,产量为127.88 mg/L.对突变前后菌株几种丁二酮代谢相关酶酶活变化的比较结果显示,突变株丁二酮产量的提高是因为乳酸脱氢酶减少及乙酰乳酸合成酶增加.正交实验优化突变株U13的最佳丁二酮发酵条件为接种量3%,初始pH 6.6,葡萄糖30 g/L,组合氮源(蛋白胨:酵母粉:牛肉膏=2:1:2)20 g/L,柠檬酸氢二铵3 g/L,乙酸钠2 g/L,吐温-80 1 m L/L,K_2HPO_4 2 g/L,Mg~(2+)2 mmol/L,Mn~(2+)0.7 mmol/L,Cu~(2+)2 mmol/L,温度为37℃.利用廉价碳氮源淀粉及小麦麸皮替代原有碳氮源,淀粉替代率不超过20%、小麦麸皮替代率不超过40%时,丁二酮产量降幅比较低.本研究通过诱变选育和发酵条件优化,提高了菌株丁二酮产量,并通过廉价碳氮源替换降低了成本,可为丁二酮的微生物工业发酵提供参考.  相似文献   

4.
三株溶藻细菌溶藻活性代谢产物的初步研究   总被引:5,自引:0,他引:5  
已知3株溶藻细菌L7、L8和L18的活性代谢产物具有明显的溶藻效果。为获得较高活性和浓度的目标产物,研究了培养基、碳源、氮源对溶藻效果的影响;为考察溶藻活性代谢产物保存和应用的环境条件,研究了其热、酸稳定性。在牛肉膏蛋白胨、淀粉、查氏和高氏1号4种培养基里,淀粉培养基最适宜用于获得溶藻活性代谢产物。以淀粉培养基为基础,碳、氮源组合依次为淀粉 (NH4)2SO4、淀粉 (NH4)2SO4,葡萄糖 KNO3时,3株溶藻细菌的溶藻活性代谢产物溶藻活性最高。这一结果为目标产物的分离奠定了物质背景。3株溶藻细菌溶藻活性代谢产物均具有良好的热稳定性,经热处理后,对叶绿素a的去除率仍高于73%。L7的无菌滤液调至pH值4.0或2.5,2h后丧失溶藻活性;L8和L18的无菌滤液调至pH值4.0,2h后未丧失溶藻活性,调至pH值2.5,2h后丧失溶藻活性。上述结果为溶藻活性代谢产物的分离奠定了基础。  相似文献   

5.
Thermobifida fusca产角质酶摇瓶发酵条件研究   总被引:4,自引:0,他引:4  
研究了环境和营养条件等对嗜热放线菌Thermobifida fusca WSH03-11生长及产角质酶的影响;并考察了苹果角质对角质酶诱导效果,分析了该菌产角质酶的机理.摇瓶研究确定了角质酶发酵的最佳种子培养基组成为90 g L-1可溶性淀粉、5 g L-1牛肉膏、5 g L-1酵母膏、5 g L-1NaCl、2 g L-1K2HPO4和1%微量元素液,生物量最高达18.5 gL-1,种龄取35~40 h.最佳环境条件为pH 8.0、5%接种量、培养温度50℃.最佳发酵培养基组成为1.5%乙醇、5 gL-1蛋白胨、5 g L-1酵母膏、2 g L-1K2HPO4、5 g L-1NaCl和1%微量元素液.发酵培养基中添加角质对角质酶合成与分泌有诱导作用,T.fusca的产酶机制为诱导型.采用上述最佳培养条件产角质酶为3.8 U mL-1.图4表3参9  相似文献   

6.
采用分批培养研究了从高浓度厌氧产氢活性污泥中筛选的优势菌种Clostridium papyrosolvens的发酵产氢能力.结果表明:该菌有较强的高糖耐受性和耐酸性,当葡萄糖浓度为30 g/L、pH阶段性控制在4.5时,发酵44 h葡萄糖消耗率为83.7%,总产气量达到3 081.3 mL/L,最高产气率为187.5 mL L-1 h-1,氢气含量为67.5%,比产氢率达1.06 mol(H2)/mol(葡萄糖).研究中选用了廉价的发酵产氢培养基,以玉米浆为氮源,以还原铁粉作氧化还原电位控制剂,省去了牛肉膏、蛋白胨等昂贵氮源以及L-半胱氨酸、维生素、无机离子等高成本组分,显著降低了纯菌发酵的培养基成本,获得了较好的产氢效果.图5表2参23  相似文献   

7.
天然丁二酮是一种香精载体,为提高其产量,有必要筛选出丁二酮高产菌株及其最佳发酵条件.从保存的一株丁二酮高产菌株6-1(2)出发,通过分子生物学方法对其进行鉴定,采用单因素试验和最佳单因素组合实验的方法筛选出该菌株的最佳发酵条件.结果表明,实验菌株6-1(2)与植物乳杆菌Lactobacillus plantarum的AB326301.1序列同源性最高,初步鉴定为植物乳杆菌;发酵条件经过优化后,丁二酮的产量从初始的38 mg/L提高到167.56 mg/L,提高了340.95%,产量提高显著.优化发酵条件为:牛肉膏10 g/L,柠檬酸氢二胺2 g/L,酵母浸粉15 g/L,磷酸氢二钾2 g/L,乙酸钠2 g/L,葡萄糖20 g/L,蛋白胨30 g/L,吐温-80 1 mL/L,初始pH 6.2-6.4,接种量1.5%,37℃静置培养10 h;该发酵条件下的丁二酮产量提高显著.本研究对丁二酮的工业化生产具有一定的参考价值.  相似文献   

8.
运用BP神经网络对红发夫酵母发酵培养基组成进行建模以及预测类胡萝卜素产量,在此基础上采用遗传算法对此模型进行全局寻优.得到红发夫酵母发酵培养基的最佳配比为:蔗糖45.10 g/L,硫酸铵3.00 g/L,硫酸镁0.80 g/L,磷酸二氢钾1.40 g/L,酵母膏3.00 g/L,氯化钙0.50 g/L,类胡萝卜素产量达到8.20 mg/L,干重达到9.47 g/L.采用上述方法优化后的培养基使类胡萝卜素的产量比起始培养基提高了95.90%.  相似文献   

9.
采用均匀设计法设计和二次多项式逐步回归分析,对一株高效杀塔玛亚历山大藻微泡菌BS03(Microbulbifer sp.)产杀藻活性物质的发酵培养条件进行优化.通过单因素实验筛选出碳源、氮源、pH、培养时间和接种量为显著影响因子,并对5个显著影响因子采用U15(155)水平对培养基进行优化.结果表明BS03最适发酵培养条件为:蔗糖8 g/L,蛋白胨10.50 g/L,初始pH值7.5,培养时间32 h,接种量3.00%.验证试验结果显示,在此条件下该菌发酵液的干重为4.725 g/L,较优化前增加了31.35%,LD50为0.768%,较优化前降低了25.14%.研究结果为杀藻活性物质以及杀藻机理的研究奠定了理论基础.  相似文献   

10.
多孔菌是一类子实体呈孔状且质地为革质至木质的大型担子菌,其中一部分具有较高的药用价值.对一株野生多孔菌子实体进行分离纯化获得纯培养BJ菌株,并对其分类、最适培养条件和液体发酵产物抗氧化活性进行分析.采用形态学和ITS分类学鉴定菌株的分类学地位;通过测定菌株在不同碳源、氮源等培养基中的生长状况,研究菌丝最适培养条件;使用2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)法测定菌株发酵液总抗氧化活性;使用总超氧化物歧化酶(T-SOD)法、1,1-二苯基-2-苦基肼基自由基(DPPH)法测定菌株发酵液菌体的总超氧化物歧化酶活力和自由基清除能力.结果显示:经鉴定BJ菌株为石榴嗜蓝孢孔菌(Fomitiporia punicata).菌丝体最适培养碳源为葡萄糖、麦芽糖和淀粉,最适氮源为酵母浸粉,最适C/N比为10/1,最适温度为28℃,最适pH为7.0.发酵液总抗氧化活性为0.517 mmol/L(维生素E),菌体的总超氧化物歧化酶活力为770.37 U/g,DPPH自由基清除力的IC_(50)为2.14 mg/mL.本研究从野外获取了一株高抗氧化活性的药用多孔菌资源,可为野生药用真菌的开发利用提供理论依据.  相似文献   

11.
为提高资源利用效率,降低微生物油脂发酵成本,解决微生物油脂发酵中废弃酵母细胞和发酵废液处理排放的问题,研究隐球酵母(Cryptococcus podzolicus)Zwy-2-3利用栎类淀粉发酵产油情况,并探讨发酵废液和废弃酵母细胞酶解液作为氮源的循环利用.结果显示,以葡萄糖60 g/L和总氮0.18 g/L的废弃酵母细胞酶解液发酵时,循环3次其油脂产量分别达到6.79 g/L、6.66 g/L、6.72 g/L,均高于对照组;而将发酵废液回收用作废弃酵母细胞酶解的缓冲液时,其生物量、油脂产量同对照组相当;将该方法应用于栎类淀粉水解液同步糖化发酵产油脂的实验,循环3次后其生物量、油脂产量分别为13.04 g/L、7.13 g/L,比对照组提高了9.85%、10.03%,且3次循环的油脂含量较为稳定.油脂组分分析结果显示,菌株Zwy-2-3利用栎类淀粉同步糖化和废弃细胞循环酶解液发酵生产的微生物油脂不饱和脂肪酸的含量达到93%以上,与植物油组成相似.综上,酶解废弃酵母细胞可有效应用于酵母产油发酵,可为非粮淀粉生产的微生物油脂应用于生物柴油生产奠定基础.  相似文献   

12.
为提高短乳杆菌L2菌株γ-氨基丁酸(GABA)的产量,建立了一个反映因素与产量之间的非线性关系模型.运用Plackett-Burman设计、中心组合试验设计(CCD)对MRS培养基组成和培养条件进行了优化,筛选出4个影响发酵的关键因素:蛋白胨、葡萄糖、谷氨酸钠、初始pH.在此基础上,采用误差反向传播神经网络(BPN)和遗传算法(GA)确定了4个关键因素的适宜参数:蛋白胨21.185 g/L,葡萄糖3.857 g/L,谷氨酸钠48.948 g/L,初始pH 4.05.最终使短乳杆菌L2菌株的GABA产量达到了27.765 g/L,比原始MRS培养基的13.452 g/L提高了106.4%.研究表明利用BPN-GA方法进行发酵条件优化是一种行之有效的途径.  相似文献   

13.
于实验室嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)淋滤处理城市污泥酸性废液中分离出一株踝节霉菌ZJ-1,并对其进行了摇瓶液体培养特性研究.单因素试验结果表明:该菌株的最适碳源和氮源分别为葡萄糖和酵母膏,最适温度为28℃,最适转速为140 r/min,最适初始pH值为5.0.正交试验优化得到碳、氮源的最优水平分别为葡萄糖70 g/L,酵母膏15 g/L.采用HPLC对该菌株PDA培养液中的有机酸进行了分析,发现其中含有丙酮酸.初始PDA培养液中丙酮酸含量为0.039 g/L,接菌培养d 5.5时其含量达0.106 g/L.为探讨踝节霉菌ZJ-1对嗜酸氧化亚铁硫杆菌淋滤污泥过程的影响,在生物淋滤起始阶段接种10%A.ferrooxidans和4%踝节霉菌ZJ-1,以仅接种10%A.ferrooxidans作为对照.结果表明A.ferrooxidans和踝节霉菌ZJ-1的复合菌组与对照组相比,淋滤耗时由7 d缩短至4 d,淋滤处理时间缩短了43%.  相似文献   

14.
一株烟草内生拮抗放线菌发酵条件优化   总被引:1,自引:0,他引:1  
为提高烟草内生放线菌Y12发酵时产生抑菌物质的产量,通过摇瓶正交优化试验,确定了Y12的三角瓶发酵条件.发酵培养基组成为:黄豆粉1.5%,蛋白胨1.5%,葡萄糖1.5%,可溶性淀粉1.5%,MgSO4.7H2O 0.05%,(NH4)SO40.25%,NaCl 0.4%,KH2PO4 0.1%,CaCO3 0.5%;培养基初始pH 7.5,培养温度30℃,发酵时间72 h.经过优化发酵液的抑菌圈直径增加了44.9%.  相似文献   

15.
为了选育高产纤维素酶菌株,通过刚果红鉴别培养基以及滤纸条崩解实验测定,从牛粪堆肥中筛选到一株产纤维素酶的真菌HS-F9,根据菌株形态特性和18SrRNA基因序列分析,初步鉴定该菌为绿色木霉(Trichoderma viride).利用液体发酵培养产生纤维素酶,研究了碳源、氮源、培养时间、培养温度、培养基起始pH、接种量对菌株HS-F9产酶的影响.结果表明:产EG、CBH和FPA的最适碳源均为CMC-Na;EG和CBH在以蛋白胨为唯一氮源时酶活最高,FPase则在以黄豆粉为唯一氮源时酶活最高;产生EG、CBH和FPA的最适温度分别为30℃、30℃、33℃;最适起始pH为3.0、3.0和4.0;EG和FPase的最适接种量为2%,CBH最适接种量达到了8%;培养时间均以5~6d为宜.在最适条件下培养,该菌株EG、CBH和FPase的酶活分别达到了5275.3U/mL、8502.1U/mL和3619.1U/mL,是未优化前的1.42、1.35和1.32倍.图6表2参23  相似文献   

16.
丙酮丁醇梭菌发酵生产ABE(丙酮-丁醇-乙醇)溶剂的传统原料是玉米淀粉,价格贵,生产基本亏损.重组毕赤酵母废弃物含有丰富的碳水化合物和蛋白质,有望替代淀粉原料.采用NaOH处理固态废弃毕赤酵母形成废酵母固/液悬浊液,发酵通过降低初始玉米粉用量并在ABE发酵进入到产溶剂期后添加废酵母悬浊液进行.对初始玉米粉用量、废酵母/NaOH投料量进行了优化,结果表明:它们的最佳用量分别为8%、80 g/L、6-10 g/L.在此条件下,100 mL厌氧瓶下的丁醇产量可以稳定在9.0-12.0 g/L的较高水平,比8%玉米粉培养基的对照提高80%-120%,与15%玉米粉培养基的对照基本持平;与对照组相比,总糖的利用效率可以从50%大幅提高到超过90%的水平;玉米粉用量可以节省57%以上;酵母废弃物最多有52%的碳水化合物可以有效地转化成气体/液体产物.本研究表明以玉米粉/废弃毕赤酵母为混合原料发酵丁醇,可以同时实现固体废物的资源化和减量化、淀粉原料的高效利用和节省化,提高了ABE发酵的综合经济性能.(图3表6参23)  相似文献   

17.
粗毛纤孔菌(Inonotus hispidus)是一种珍稀的药用真菌,野生资源非常匮乏,目前人工栽培粗毛纤孔菌技术尚未成熟,为了提高粗毛纤孔菌栽培生物转化率和缩短生产周期,首先对采集的野生粗毛纤孔菌菌丝培养条件进行分析,然后进一步探究采用大米栽培粗毛纤孔菌的方法.在分析菌丝培养条件过程中,以菌丝长速为指标来筛选菌株菌丝生长适宜的温度、pH、碳源和氮源;在子实体栽培研究过程中,以生物转化率为指标来筛选适合菌株子实体生长的栽培培养基.菌丝生长培养条件筛选结果表明,寄生枣树的野生粗毛纤孔菌菌丝生长的最适培养条件为温度25℃、初始p H 6.0、碳源葡萄糖、氮源酵母提取粉.驯化栽培结果显示,粗毛纤孔菌在以大米为主要基质的培养基中生物转化率较高,优化后的最优栽培条件为营养液中酵母提取粉含量0.2%、大米与营养液的料液比1:1.6、液体菌种接种量4 mL,在该条件下,菌丝长满栽培培养基需4 d左右,原基分化形成子实体需20 d左右,生物转化率可达到28.70%±5.05%.本研究结果表明以大米为主要基质栽培粗毛纤孔是可行的,同时也可为其他珍稀药用真菌寻找新的栽培基质提供思路.  相似文献   

18.
抗真菌多肽捷安肽素发酵条件的研究   总被引:4,自引:2,他引:4  
对筛选出的一株芽孢杆菌ZK发酵产物抗真菌多肽捷安肽素的发酵培养基组分(碳源、氮源及无机盐)和工艺条件(发酵温度、起始pH,摇床转速,装液量)进行了摸索,通过单因素实验和正交优化实验,确定了ZK菌株发酵培养基最佳组成:生物氮素3.5%、葡萄糖3%、酵母膏0.08%、MgSO4·7H2O 0.5%、KH2PO4·3H2O 0.1%;最适温度为32℃;最适初始pH为8.0.在250 mL三角瓶中装50 mL培养基,于150 r min-1的旋转摇床上32℃振荡培养72 h,ZK菌株产捷安肽素的量达到最大.图8表5参14  相似文献   

19.
为提高枯草芽孢杆菌WSHDZ-01合成过氧化氢酶的水平,尝试了不同种类氮源的添加.结果表明,硝酸钠(NaNO3)为适宜氮源,虽然生物量仅1.25 g/L,但过氧化氢酶活力最高可达3 200 U/mL.在添加NaNO,的基础上,研究了添加其它氮源麦芽汁、酵母膏、玉米浆对提高wsHDz.0l生物量的影响,发现适宜浓度的麦芽汁不仅可以提高生物量,并且能够缩短发酵周期.经进一步优化,在3 L发酵罐中,WSHDZ-01生物量提高到6 g/L,过氧化氢酶活力达到11 000 U/mL,与优化前相比,发酵周期缩短了近60%,生产强度提高了3倍.  相似文献   

20.
均匀设计法优化樟芝产三萜液体发酵条件   总被引:1,自引:0,他引:1  
为在兼顾生物量的基础上提高液体发酵中三萜的百分含量,首先通过单因子试验筛选出最佳的碳源、氮源、无机盐,然后采用均匀设计(UD)对其培养基配比和培养条件进行优化试验,建立适当的数学模型,并对模型进行验证确定优化条件.单因子试验结果表明玉米淀粉既能促进菌丝体的生长,又能促进三萜的合成;麸皮虽然对菌体生长略有不利,但是对三萜的积累作用特别显著;硫酸镁对菌丝体生长效果不显著,但是对三萜的合成比较有利.均匀设计试验结果表明,菌丝体干重最大的培养条件和三萜的最优培养条件相差甚远.菌丝体干重的最优培养条件为:1 L培养液中玉米淀粉47 g,麸皮47 g,硫酸镁0.5 g,初始pH 3.0,培养7 d;三萜最佳培养基配方为:1 L培养液中玉米淀粉20 g,麸皮20 g,硫酸镁1.85 g,初始pH 3.0,培养16 d.菌丝体干重在最优条件下能达到15.58(±0.37)g L-1;三萜百分含量在最优培养条件下高达6.04(±0.03)%,三萜的百分含量比基础发酵结果和报道的最高发酵结果3.18%提高了90%,因此,均匀设计法能有效优化液体发酵培养条件  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号