首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

2.
Abstract

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 μm, corresponding with the wavelength region of visible light, which accounted for ~72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

3.
利用自制气溶胶反应器通过实验研究了不同相对湿度(RH)、光照、NOx和NH3条件对SO2在高岭土表面的气-粒转化过程和SO42-生成量的影响。结果表明:RH是影响高岭土表面SO2转化及SO42-生成的最重要因素,随着RH的增加,高岭土表面SO2的转化量及SO42-的生成量也明显增加,其中SO2转化量最大增幅达600%;光照条件对高岭土表面SO2的转化及SO42-的生成也有一定影响,光照越强SO2的转化量及SO42-的生成量越高;NOx和NH3的存在会促进SO2在高岭土表面的转化和SO42-的生成,协同作用明显。  相似文献   

4.
利用自制气溶胶反应器通过实验研究了不同相对湿度(RH)、光照对NOx在高岭土表面的非均相转化过程和NO3-生成量的影响,探讨了SO2、NH3及SO2/NH3共存对NOx转化的影响。结果表明:随着RH的增加,高岭土表面NOx转化量及NO3-生成量均显著降低,其中NOx转化量最大降幅可达433%;光照增加对高岭土表面NOx的转化及NO3-的生成有促进作用,NOx转化量和NO3-生成量的相对增幅最高可分别达到167%和200%;SO2、NH3分别存在及共存时会促进NOx在高岭土表面的转化,其中NH3存在时对NOx转化和NO3-生成的协同作用最为显著。  相似文献   

5.
Abstract

Organic carbon has been found to be a significant component of aerosols that impair visibility in remote areas across the country. Organic aerosols are particularly important in western areas of the United States and contribute roughly equally with sulfate aerosols and dust in the total extinction budget. Potential visibility enhancement resulting from various future energy management options that reduce volatile organic carbon and particulate material emissions from fossil-energy-related processes hinges on the relative contribution of the fossil-fuel-derived organic component to the extinction budget. Thus, additional studies are needed to quantify the partitioning of organic carbon between biogenic and fossil sources. Relative humidity (RH) also plays an important role in visibility impairment. It is well known that water soluble aerosol species, such as sulfate and nitrate, can increase light-scattering efficiencies of fine particles by more than an order of magnitude as RH is increased from 20-30% to 90-95%. Organic carbon aerosol has been found to be a mixture of more soluble and less soluble components, but few studies have been performed to evaluate the RH response function of aerosols composed of these components, either separately or in combination, especially at high relative humidities. The purpose of this paper is to describe some experiments that could address the major uncertainties of biogenic and fossil carbon contributions to the fine particle extinction budget and visibility impairment.  相似文献   

6.
The eastern United States national parks experience some of the worst visibility conditions in the nation. To study these conditions, the Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles. It is a cooperative three-year study that is sponsored by the National Park Service and the Electric Power Research Institute and its member utilities. The field portion of the study was carried out from July 15 to August 25, 1995. The study design, instrumental configuration, and estimation of aerosol types from particle measurements is presented in a companion paper. In the companion paper, we compare measurements of scattering at ambient conditions and as functions of relative humidity to theoretical predictions of scattering. In this paper, we make similar comparisons, but using statistical techniques. Statistically derived specific scattering associated with sulfates suggest that a reasonable estimate of sulfate scattering can be arrived at by assuming nominal dry specific scattering and treating the aerosols as an external mixture with ammoniation of sulfate accounted for and by the use of Tang's growth curves to predict water absorption. However, the regressions suggest that the sulfate scattering may be underestimated by about 10%. Regression coefficients on organics, to within the statistical uncertainty of the model, suggest that a reasonable estimate of organic scattering is about 4.0 m2/g. A new analysis technique is presented, which does not rely on comparing measured to model estimates of scattering to evoke an understanding of ambient aerosol growth properties, but rather relies on measurements of scattering as a function of relative humidity to develop actual estimates of f(RH) curves. The estimates of the study average f(RH) curve for sulfates compares favorably with the theoretical f(RH) curve for ammonium bisulfate, which is in turn consistent with the study average sulfate ammoniation corresponding to a molar ratio of NH4/SO4 of approximately one. The f(RH) curve for organics is not significantly different from one, suggesting that organics are weakly to nonhygroscopic.  相似文献   

7.
The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples. Our results showed that the origin of air masses is an important factor that controls the variation in the size distribution of the main components. Very high concentrations of WSOC as well as higher concentrations of BC were found under mostly continental influence. Besides the main ionic species (SO4(2-), NH4(+), K+) in the finest size fraction (0.17-0.53 microm), the concentration of NO3(-) was also high. The difference between the two different air mass origins is particularly expressed for Cl-, Na+, Mg2+ and Ca2+ determined in particles larger than 1.6 microm. As expected, a very good correlation was found between Na+ and Cl-. A good correlation was found between sea salt elements and elements of crustal origin (Na+, Cl-, Mg2+, Ca2+, Sr). A good relationship between typical anthropogenic tracers (K, V and Pb) was also observed. The mass growth factors, for all size fractions of aerosols collected under continental influence were very low (maximum 2.23 at 94%, 1.6-5.1 microm), while under marine influence the mass growth factors increased significantly with the particle size. At 97% humidity, the mass growth factors were 6.95 for the size fraction 0.53-1.6 microm and 9.78 for larger particles (1.6-5.1 microm).  相似文献   

8.
As part of a study examining the technical basis for a secondary national ambient air quality standard for fine particulate matter to protect visibility, we reviewed available data on atmospheric aerosol and visibility in the eastern U.S. This paper presents the results of that visibility and aerosol characterization.

Analysis of airport visibility data indicates that the annual median visual ranges in the East are in the 16-25 km range. In the absence of a "reference method," limited measurements of visibility using various types of instruments provide data generally in agreement with the airport visibility estimates when a contrast threshold of 0.05 is assumed in calculating visual range from the instrumental measurements.

Both long- and short-term aerosol measurements have yielded consistent results; however, because of the differences in instrumentation and laboratory analytical techniques among various studies, data often are not directly comparable. The measured annual average fine particulate matter mass concentration is about 18 μg/m3 in the rural East; during summer it increases to about 23 μg/m3. If all the sulfur in the fine mass is assumed to exist as ammonium sulfate, it would constitute 46 percent of the annual mean and about 60 percent of the summer mean fine mass concentrations. Carbon and volatiles, including water, are believed to constitute significant fractions of the fine mass; however, there are little data quantifying their contributions to fine mass and visibility impairment. Additional long-term measurements of visibility and fine aerosol and its various components are necessary to completely characterize visibility and aerosol in the East.  相似文献   

9.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

10.
以北京西山森林公园为观测点,运用双通道颗粒物在线监测设备监测PM2.5质量浓度,使用离子色谱仪测定样品中水溶性离子浓度,对北京西山油松林PM2.5质量浓度及水溶性离子特征进行分析。结果表明:PM2.5质量浓度为冬季(121.29±16.78)μg·m-3 > 春季(106.06±12.68)μg·m-3 > 秋季(88.01±17.44)μg·m-3 > 夏季(72.67±12.18)μg·m-3;SO42-、Na+、NO3-、HCOO-是PM2.5中最主要的水溶性离子成分,占所测水溶性离子浓度在四季分别为94.99%、72.66%、72.66%、89.52%,PM2.5受SO42-、Na+、NO3-、NH4+影响较大,基本呈正相关关系,SO42-、Na+、NO3-、NH4+、PM2.5浓度季节变化一致,即在冬季最高,夏季最低,春秋次之,且水溶性离子季节差异显著。SO42-和NO3-、Na+、NH4+的相关性极显著(r=0.85、0.80、0.92),NO3-和Na+、NH4+之间关系也较大(r=0.87、0.66),Ca2+和Mg2+相关性极明显(r=0.98),其他水溶性离子间无明显的相关性,固定源和海洋源对水溶性离子贡献程度呈现出季节差异,秋季机动车尾气排放对空气硫和氮污染贡献达最高,春季最低,夏秋季海洋源对Cl-影响明显。通过对森林植被区PM2.5、水溶性离子特征及关系进行分析,更好地发挥植被的生态效益,提高空气质量。  相似文献   

11.
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined.  相似文献   

12.
Fang GC  Wu YS  Chang SY  Rau JY  Huang SH 《Chemosphere》2006,64(8):1253-1263
The characterization for water-soluble species of total suspended particulate (TSP), dry deposition flux, and dry deposition velocity (V(d)) were studied at Taichung Harbor (TH) and Wuchi traffic sampling sites at offshore sampling site near Taiwan Strait of central Taiwan during March 2004-January 2005. The average concentrations of TSP and dry deposition flux at the TH sampling site were higher than at the WT sampling site during the sampling period. The samples collected were analyzed by a ion chromatography (DIONEX-100) for the ionic species (Cl(-), SO(4)(2-), NO(3)(-), NH(4)(+), Na(+), Ca(2+), and Mg(2+)) analysis. The dominant ionic species for TSP are SO(4)(2-), NO(3)(-), and NH(4)(+) of the total mass of the inorganic ions at both sampling sites. In addition, the results indicated that the NH(4)(+), NO(3)(-) and SO(4)(2-) showed higher concentrations in winter and lower in summer for both TH and Wuchi sampling sites. Statistical methods such as correlation coefficient and principal component analysis were also used to identify the possible pollutant source.  相似文献   

13.
Lee CT  Lin NH  Hsu WC  Chang YL  Chang SY 《Chemosphere》1999,38(2):425-443
The Mei-yu (plum rain) season is a short but important period when the weather changes from spring to summer in Taiwan. In this study, size-segregated aerosols were collected alternately at 5 sampling sites in northwestern Taiwan from June 16 to 24, 1994. For the first time in Taiwan, this study revealed the aerosol mass spectra and water-soluble ions in the Mei-yu season. For all samples, a bi-modal aerosol mass spectra was found with modal diameters at 3.2 and 0.32 microm, respectively. The aerosol samples were able to be divided into different groups to show their mass and ion spectra according to the calculated 5-hr backward air trajectory. The utilization of enrichment factors showed that aerosol Cl-, Na+, and Mg2+ for all sizes, and super-micron SO4(2-) were related to the sea. Both the scheme of "chlorine loss" (Ohta and Okita, 1990) and a multivariate analysis (Thurston and Spengler, 1985) for categorizing water-soluble ions showed that sea-salts were major contributors in the prevalence of a sea breeze. In contrast, the secondary salts were significant for land breeze and a mix of land-sea breeze. In conclusion, the influence of local circulation on the distribution of aerosol mass and ionic species was found to be prominent.  相似文献   

14.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

15.
硫酸盐、铵盐等水溶性无机盐粒子是大气气溶胶的重要组成部分,为进一步提高高效过滤器性能测试实验的精度,提出了过滤器测试标准要求外的新的人工尘气溶胶发生液(NH4)2SO4,并通过一系列实验,从相关性、粒谱分布、分散度等方面对其气溶胶粒子能否满足测试气溶胶的要求进行验证分析。实验结果表明,(NH4)2SO4和KCl间的相关系数R2为0.994 78,相关性很好;NaCl、KCl和(NH4)2SO4气溶胶的几何标准差分别为0.88、0.85和0.87,呈单分散且分散程度接近,可很好的满足测试气溶胶要求。还获得了可控参数喷气压力与发生溶液质量浓度对(NH4)2SO4气溶胶粒谱分布的影响规律:随喷气压力的增加,气溶胶粒子的粒径减小,分布集中;而随发生溶液质量浓度的增加,粒径增大,导致分散度增加。质量浓度和喷气压力对(NH4)2SO4和KCl气溶胶粒径和分散度作用规律的一致性进一步表明(NH4)2SO4作为测试气溶胶的可行性。  相似文献   

16.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

17.
Aerosol light scattering measurements as a function of relative humidity   总被引:1,自引:0,他引:1  
The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.  相似文献   

18.
《Atmospheric environment(England)》1981,15(10-11):2055-2061
Visibility modeling over long transport distances is complicated not only by the chemical and removal processes, but also by the multiplicity of sources from different areas that contribute to the particle and gaseous concentrations—and visibility impairment—at specific locations. To study interregional pollutant exchanges and their effect on visibility, a regional model has been developed and applied to the eastern United States and the visibility reduction budgeted according to area of origin. The new model, called VISMAP-1, produces short-term (three-hour) and long-term (monthly) sulfate concentrations; visibility calculations are made by applying a mass-to-light-scattering function to the aerosol concentrations. This function is weighted according to relative humidity to account for hygroscopic particle growth. One of the most useful features of this model is its capability to budget fine-particulate and gaseous concentrations in various receptor regions according to the contribution of source regions.In this analysis for visibility effects, three-hour SURE (Sulfate Regional Experiment) sulfate measurements for July 1978 are compared to fine-particle calculations to evaluate the model's ability to predict the transport of aerosol sulfur for the shorter averaging period. Visibility is modeled from the sulfate calculations using an empirical mass-to-light-scattering function. This technique is commonly used to determine aerosol light-scattering properties at given relative humidities. National Weather Service visual range observations have been compared with the model's visibility calculations; both regional patterns of visibility degradation and the absolute magnitude of the reduction in visual range are evaluated. Preliminary results are encouraging and the VISMAP modeling approach appears to be a useful step toward identifying long-range source/receptor relationships that affect visibility.  相似文献   

19.
上海地区气溶胶特征及MODIS气溶胶产品在能见度中的应用   总被引:6,自引:0,他引:6  
利用气象站点能见度的历史资料和美国国家宇航局的MODIS卫星遥感手段获取10 km×10 km分辨率的气溶胶光学厚度(AOD)资料,建立二者的季节平均关系,得到了上海地区季节变化的气溶胶标高,并利用标高数据和AOD的季节分布,反演出上海地区季节变化的区域能见度分布,研究了近地层大气气溶胶与地面能见度的关系,分析了上海地区AOD的特征及能见度的时空分布特征.结果显示:上海地区冬春季平均能见度较差,外环线以内能见度在10 km以下;低能见度中心分布明显.  相似文献   

20.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号