共查询到17条相似文献,搜索用时 62 毫秒
1.
文章利用HYSPLIT后向轨迹模式,分析沈阳地区2020年4月-2021年3月的大气颗粒物来源的传输路径及潜在的污染源区。首先,结合PM2.5和PM10的质量浓度监测值,分析了日、月和季节时间变化特征,结果表明,研究时段内颗粒物浓度变化趋势呈“U”型分布,存在明显的季节特征,冬季>春季>秋季>夏季,这与污染物排放和气象状况密切相关。其次,对大气颗粒物进行逐日72 h后向轨迹溯源分析,运用轨迹聚类分析、潜在源区贡献分析和浓度权重轨迹分析3种分析方法。后向轨迹聚类分析表明,沈阳市气流来源轨迹四季变化明显,春夏两季轨迹呈散射状分布、秋冬两季轨迹来源路径主要为长距离西北路径和短距离西南路径,西北路径途径俄罗斯南部、蒙古国和内蒙古东北部,西南路径途径河北东北部、北京、天津、山东东部;各季节来自西南和西北方向的轨迹数量更多且输送的PM2.5、PM10浓度值更高。潜在源区及浓度贡献权重轨迹分析表明,冬季潜在源区分布范围及贡献程度远大于春夏秋三季,强贡献潜在源区主要集中在辽宁本地及环渤海湾一带。 相似文献
2.
银川地区大气颗粒物输送路径及潜在源区分析 总被引:4,自引:0,他引:4
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异. 相似文献
3.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱. 相似文献
4.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区. 相似文献
5.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出... 相似文献
6.
7.
8.
基于后向轨迹模式(HYSPLIT)模拟了葫芦岛市2019—2021年气流的72 h后向轨迹,同时结合同期的逐日PM2.5浓度数据,采用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)探讨了葫芦岛市PM2.5不同季节的潜在源区及其对葫芦岛市PM2.5浓度的贡献。结果表明:冬季,葫芦岛市最主要的潜在源区为乌兰布和沙漠,其次为蒙古国东南部、内蒙古东部、京津冀地区和辽宁省西部城市群;秋季葫芦岛市最主要的潜在源区为辽宁省南部、京津冀地区、山东省北部和河南省北部;春季的相对高值区域零星分布在京津冀地区、山东省和渤海海域等地区,夏季相对高值区域零星分布在京津冀地区和山东省西北部。 相似文献
9.
10.
利用Meteoinfo软件中的Trajstat插件对2019-03—2020-02期间抵达嘉峪关市的气团进行后向轨迹模拟,并结合各类大气污染物数据,对嘉峪关市四季的后向轨迹进行聚类分析,研究抵达嘉峪关市的主要气团输送路径及对应路径的污染物浓度特征。通过潜在源贡献因子法(PSCF)及权重浓度轨迹分析法(CWT)来分析PM10与O3的输送来源及主要潜在源区。结果表明:输送至嘉峪关市的气团中,西北方向气团轨迹数目和污染轨迹数目占比均大于其余方向,嘉峪关市四季的大气污染更易受到西北方向气团的影响。嘉峪关市春季PM10污染相对严重,更易受到新疆东部地区潜在源区的影响,其余三季PM10污染相对较轻,潜在源区主要集中在新疆东部地区,少数位于嘉峪关市东北方向。嘉峪关市春、夏季的O3污染相对严重,强潜在源区主要集中在新疆东部地区及甘肃河西走廊地区,秋、冬季O3污染相对较轻,其中秋季潜在源区主要位于甘肃河西走廊地区,冬季潜在源区主要位于新疆东部地区。 相似文献
11.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析 总被引:1,自引:0,他引:1
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间. 相似文献
12.
以五级撞击式大气颗粒物采样器采集贵阳城、郊大气颗粒物样品,分析了不同粒径大气颗粒物的全硫同位素组成,以此为基础,探讨了大气颗粒物中硫的来源,同时初步查明了贵阳城、郊大气颗粒物全硫同位素组成在时间和粒径上的变化趋势:(1)大气颗粒物的硫同位素组成变化范围随粒径变小而减小。说明伴随粒径变小,颗粒物中硫的来源趋向简单,硫越来越多地由气相硫转化而来。(2)春季样品各级颗粒物的δ34S值有低于夏季的趋势。这反映出,燃煤排放的SO2通量与生物源硫化物通量在时间上的消长关系是控制颗粒物中硫的来源构成的一个重要因素。 相似文献
13.
通过采样和分析,对龙岩市大气颗粒物10种主要源样品进行了富集因子分析和R型聚类分析.结果表明:各类源样品的成分谱具有显著差异,对不同元素的富集程度各不相同,但对金属元素的富集程度均较高.高岭土矿中W的富集因子为255.32, Bi的富集因子为520.12,红土壤中Bi的富集因子为173.41,小煤炉灰中Sb的富集因子为119.98,以机动车尾气、钢铁厂及燃煤等的贡献为主;龙岩市大气颗粒物的来源可以分为4个类型,即道路尘及土壤风沙尘类,建筑水泥尘类,金属冶炼及钢铁厂尘类和饲料厂尘类别. 相似文献
14.
流行病学研究揭示PM2.5暴露与低体重新生儿,早产,先兆子痫,自发性流产,胎儿心血管、消化和神经系统发育异常以及出生缺陷具有相关性,但PM2.5对儿童发育影响的毒性机制尚不清楚。斑马鱼现已成为体内发育毒性研究的主要模式动物,综述了大气颗粒物对斑马鱼胚胎的毒性及机制相关研究进展,结果表明:大气颗粒物暴露可增加胚胎畸形率和死亡率,且效应强度与颗粒物来源和暴露方式有关;大气颗粒物还可造成胚胎骨骼、心脏、鱼鳔、肝、肠、肌肉等器官组织损伤;毒性机制主要包括改变胚胎全基因表达、microRNA表达及心脏AhR和Wnt/β-catenin通路相关基因表达,最终引起炎症和氧化应激过程,导致胚胎毒性和器官畸形,影响心血管、神经、运动等系统发育。 相似文献
15.
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视. 相似文献
16.
利用2015~2019年山东省日照市PM2.5质量浓度和气象要素的小时数据,对日照市PM2.5季节污染特征和日照市海陆风特征进行了分析,并基于HYSPLIT模式计算了5年逐日02:00、08:00、14:00和20:00(BTC)的48h后向轨迹,不仅通过轨迹聚类分析和潜在源区分析探讨了日照市不同季节PM2.5主要传输路径和其轨迹污染特征及其潜在源区分布和贡献,也分析了海陆风对日照市污染物的影响.结果表明:日照市PM2.5呈现冬季最高、夏季最低的分布特征,监测站点颗粒物浓度在偏西北风影响下较高.日照市不同季节主要输送路径存在差异:春季主要受到偏东和偏北方向气流影响;夏季在副热带高压影响下主要受到来自海上的较为清洁的偏东气流影响;秋季主要受到西北和偏东气流影响;冬季主要受西北和偏北气流影响.整体而言,不同季节受偏西至偏南气流影响时,日照市对应的PM2.5浓度较高.日照市海陆风春秋季多,夏冬季少;在海陆风影响下,日照市PM2.5污染和臭氧污染呈现不同的分布特征,且在不同PM2.5污染等级下,PM2.5浓度日变化特征也与其在非海陆风日的日变化有所差异.污染潜在源区分析结果表明,日照市最主要的潜在源区位于山东省临沂市、潍坊市、青岛市和江苏省连云港市. 相似文献
17.
利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区. 相似文献