共查询到17条相似文献,搜索用时 205 毫秒
1.
文章利用HYSPLIT后向轨迹模式,分析沈阳地区2020年4月-2021年3月的大气颗粒物来源的传输路径及潜在的污染源区。首先,结合PM2.5和PM10的质量浓度监测值,分析了日、月和季节时间变化特征,结果表明,研究时段内颗粒物浓度变化趋势呈“U”型分布,存在明显的季节特征,冬季>春季>秋季>夏季,这与污染物排放和气象状况密切相关。其次,对大气颗粒物进行逐日72 h后向轨迹溯源分析,运用轨迹聚类分析、潜在源区贡献分析和浓度权重轨迹分析3种分析方法。后向轨迹聚类分析表明,沈阳市气流来源轨迹四季变化明显,春夏两季轨迹呈散射状分布、秋冬两季轨迹来源路径主要为长距离西北路径和短距离西南路径,西北路径途径俄罗斯南部、蒙古国和内蒙古东北部,西南路径途径河北东北部、北京、天津、山东东部;各季节来自西南和西北方向的轨迹数量更多且输送的PM2.5、PM10浓度值更高。潜在源区及浓度贡献权重轨迹分析表明,冬季潜在源区分布范围及贡献程度远大于春夏秋三季,强贡献潜在源区主要集中在辽宁本地及环渤海湾一带。 相似文献
2.
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异. 相似文献
3.
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱. 相似文献
4.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区. 相似文献
5.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出... 相似文献
6.
7.
8.
基于后向轨迹模式(HYSPLIT)模拟了葫芦岛市2019—2021年气流的72 h后向轨迹,同时结合同期的逐日PM2.5浓度数据,采用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)探讨了葫芦岛市PM2.5不同季节的潜在源区及其对葫芦岛市PM2.5浓度的贡献。结果表明:冬季,葫芦岛市最主要的潜在源区为乌兰布和沙漠,其次为蒙古国东南部、内蒙古东部、京津冀地区和辽宁省西部城市群;秋季葫芦岛市最主要的潜在源区为辽宁省南部、京津冀地区、山东省北部和河南省北部;春季的相对高值区域零星分布在京津冀地区、山东省和渤海海域等地区,夏季相对高值区域零星分布在京津冀地区和山东省西北部。 相似文献
9.
10.
利用Meteoinfo软件中的Trajstat插件对2019-03—2020-02期间抵达嘉峪关市的气团进行后向轨迹模拟,并结合各类大气污染物数据,对嘉峪关市四季的后向轨迹进行聚类分析,研究抵达嘉峪关市的主要气团输送路径及对应路径的污染物浓度特征。通过潜在源贡献因子法(PSCF)及权重浓度轨迹分析法(CWT)来分析PM10与O3的输送来源及主要潜在源区。结果表明:输送至嘉峪关市的气团中,西北方向气团轨迹数目和污染轨迹数目占比均大于其余方向,嘉峪关市四季的大气污染更易受到西北方向气团的影响。嘉峪关市春季PM10污染相对严重,更易受到新疆东部地区潜在源区的影响,其余三季PM10污染相对较轻,潜在源区主要集中在新疆东部地区,少数位于嘉峪关市东北方向。嘉峪关市春、夏季的O3污染相对严重,强潜在源区主要集中在新疆东部地区及甘肃河西走廊地区,秋、冬季O3污染相对较轻,其中秋季潜在源区主要位于甘肃河西走廊地区,冬季潜在源区主要位于新疆东部地区。 相似文献
11.
为研究大气边界层中上层大气颗粒物的数浓度谱分布特征及气团来源的影响,于2018年6月利用3080型SMPS粒径谱仪对武当山14.6~660 nm颗粒物数浓度谱进行观测,分析和探讨了其数浓度谱分布及日变化特征,并结合后向轨迹、潜在源贡献因子法(PSCF)与浓度权重轨迹分析法(CWT)探讨对武当山颗粒物数浓度影响较大的外源输送路径和贡献源区.结果表明:①武当山大气颗粒物主要以爱根模态为主,平均数浓度为2 500个/cm3,积聚模态、核膜态平均数浓度分别为2 265、359个/cm3,3种模态数浓度分别占总数浓度的48.79%、44.21%、7.01%.②在新粒子生成日,核膜态数浓度于10:00开始上升,11:00—17:00的核膜态数浓度相对较高,约2 000个/cm3.新粒子生成日ρ(SO2)与ρ(O3)的日变化趋势均与核模态数浓度较为相似,表明SO2和O3参与光化学反应后的产物(硫酸及有机物)有利于新粒子的生成与增长.新粒子生成日风速、温度均大于非新粒子生成日,但相对湿度较低.③在东部及局地气团影响下大气颗粒物主要以积聚模态为主,数浓度分别为2 311和2 596个/cm3;核模态、爱根模态数浓度在受西北气团影响时最大,数浓度分别为806和3 078个/cm3.④潜在源区分析表明,影响武当山积聚模态数浓度的主要源区为十堰市本地及襄阳市,二者贡献值在840个/cm3以上.研究显示,武当山颗粒物主要以爱根模态为主,颗粒物数浓度日变化主要受大气边界层发展及山谷风的影响,较高的ρ(SO2)与ρ(O3)以及高温、低湿及较大的风速均有利于新粒子的生成,周边城市的区域性传输对武当山颗粒物的影响较大. 相似文献
12.
辽宁省背景地区降水化学特征及其与大气传输的关系 总被引:3,自引:4,他引:3
为了解辽宁省背景地区降水化学特征及其与大气传输的关系,于2007年2月─2008年1月在辽中县水文监测站进行了降水化学特征观测,测量项目包括降水pH,电导率和离子浓度. 观测期间降水pH为3.4~7.3,降水量加权平均值为4.6,整体呈酸性. 降水中主要阴离子为SO42-和NO3-,浓度分别为154.3和53.4 μeq/L,二者占阴离子总量的76.8%; 主要阳离子为NH4+和Ca2+,浓度分别为124.6和89.2 μeq/L,占阳离子总量的70.6%. 利用后向气流轨迹分析了降水气团来源对降水化学的影响,结果表明:在辽宁省及周边地区的局地气团影响下,降水中离子浓度最高;而在起源于东亚地区,经朝鲜半岛到达的南-东南气团影响下,降水次数虽最多,但离子浓度最低. 相似文献
13.
利用2017年10月~2018年8月的PM10、PM2.5、PM1质量浓度数据以及NCEP全球再分析气象资料,分析乌鲁木齐市区和南郊山区颗粒物浓度变化特征,结合HYSPLIT后向轨迹模型、潜在源贡献因子分析(PSCF)以及浓度权重轨迹分析(CWT)分析市区颗粒物潜在源区.研究结果表明:①市区PM2.5的超标天数为26d,南郊山区无PM2.5超标,市区PM10的超标天数是南郊山区的3.5倍,市区日均值及月均值质量浓度是南郊山区的2~7倍,市区呈现冬高夏低的季节特征,南郊山区春季最高;②乌鲁木齐市区PM10日变化存在3个峰值,PM2.5、PM1为双峰型分布,南郊山区均呈双峰分布;并存在季节性周末效应;③长短两支聚类气流轨迹对乌鲁木齐市区颗粒物浓度影响较大,春夏气流来自中亚,秋冬来源于北疆周边地区;④颗粒物潜在源区分布季节特征显著,高值区主要为昌吉、巴州、吐鲁番等周边地区,西北部中亚地区也是颗粒物重要来源区域之一. 相似文献
14.
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视. 相似文献
15.
利用轨迹模式研究上海大气污染的输送来源 总被引:15,自引:0,他引:15
利用HYSPLIT4模式和全球资料同化系统(GDAS)气象数据,计算了2010年12月─2011年11月期间抵达上海的气流后向轨迹. 结合聚类方法和上海ρ(SO2)、ρ(NO2)、ρ(PM10)数据,分析了各季节不同类型气流轨迹对污染物浓度的影响,利用引入权重因子后的潜在源贡献算法分析了不同季节PM10和NO2潜在WPSCF(源区分布概率)特征. 结果表明:上海气流输送季节变化特征明显. 冬、春和秋季,上海较易受到来自西北、西南等区域的大陆性气流影响,受沙尘或人为污染排放的影响相对较大,ρ(PM10)、ρ(SO2)和ρ(NO2)平均值相对较高,分别为162、74和53μg/m3. 夏季上海主要受较清洁的海洋性气流影响,ρ(PM10)、ρ(SO2)和ρ(NO2)相对较低,分别为47、19和36μg/m3. 上海PM10和NO2的WPSCF分布特征类似,在冬、春和秋季,WPSCF高值(0.2~0.4)主要集中在江苏南部,河南、安徽等地的带状区域也有一定贡献,说明这些区域是上海这2种污染物的潜在源区. 夏季WPSCF的分布较为集中,上海以外区域值基本小于0.1,说明外来污染输送的贡献较小. 相似文献
16.
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小. 相似文献
17.
利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区. 相似文献