首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation conducted a full-scale survey the drinking water distribution system in Kaohsiung city, Taiwan. The aim was to investigate whether the distribution system was capable of maintaining high water quality from the water treatment facilities through to the end user. The results showed that the distribution system can maintain high water quality, except for suitable chlorine residuals. The authors plotted chlorine residual contour maps to identify areas with low chlorine residuals, helping them prioritize sections that must be flushed or renewal. The contour maps also provide sufficient and clear information for locating booster chlorination stations. Contour maps enable water facilities to identify how water quality decays in the distribution systems and the locations of such decay. Water quality decay can be caused by properties of pipeline materials, hydraulic conditions, and/or biofilm thickness. However, understanding the exact reasons is unnecessary because the contour maps provide sufficient information for trouble-shooting the distribution systems.  相似文献   

2.
Previous work has shown that arsenic can accumulate in drinking water distribution system (DWDS) solids (Lytle et~al., 2004) when arsenic is present in the water. The release of arsenic back into the water through particulate transport and/or chemical release (e.g. desorption, dissolution) could result in elevated arsenic levels at the consumers' tap. The primary objective of this work was to examine the impact of pH and orthophosphate on the chemical release (i.e. desorption) of arsenic from nine DWDS solids collected from utilities located in the Midwest. Arsenic release comparisons were based on the examination of arsenic and other water quality parameters in leach water after contact with the solids over the course of 168~hours. Results showed that arsenic was released from solids and suggested that arsenic release was a result of desorption rather than dissolution. Arsenic release generally increased with increasing initial arsenic concentration in the solid and increasing pH levels (in the test range of 7 to 9). Finally, orthophosphate (3 and 5 mg PO4/L) increased arsenic release at all pH values examined. Based on the study results, utilities with measurable levels of arsenic present in their water should be aware that some water quality changes can cause arsenic release in the DWDS potentially resulting in elevated levels at the consumer's tap.  相似文献   

3.
Heterotrophic bacteria in drinking water distribution system: a review   总被引:1,自引:0,他引:1  
The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.  相似文献   

4.
5.
Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.  相似文献   

6.
This study was carried out to measure and compare the concentration of bacterial endotoxin in a variety of samples from drinking tap and bottled water available in Kuwait by using the Limulus Amoebocyte lysate test. A total of 29 samples were tested. Samples were collected from a variety of locations throughout the six governorates of Kuwait and 23 brands of local and imported bottled water samples were collected from the local market. The concentration of bacterial endotoxin was measured by using the standard Limulus Amoebocyte lysate test, gel clot method. This study showed that measured endotoxin concentrations in tap drinking water varied from 2.4 to 33.8?EU/ml with the average endotoxin concentration of 14.2?EU/ml. While the results of endotoxin concentrations in the bottled water were <0.03 to 20.1?EU/ml with an average of 1.96?EU/ml. The average concentration of endotoxin in bottled water is 13.5 % of the average concentration of endotoxin in tap drinking water. This experimental investigation has proved that drinking bottled water has less endotoxin as compared to tap water in Kuwait. It is also demonstrated that the endotoxin concentration did not exceed the acceptable level in drinking tap water.  相似文献   

7.
8.
9.
10.
A sequential extraction approach was utilized to estimate the distribution of arsenite [As(iii)] and arsenate [As(v)] on iron oxide/hydroxide solids obtained from drinking water distribution systems. The arsenic (As) associated with these solids can be segregated into three operationally defined categories (exchangeable, amorphous and crystalline) according to the sequential extraction literature. The exchangeable As, for the six drinking water solids evaluated, was estimated using 10 mM MgCl(2) and 10 mM NaH(2)PO(4) and represented between 5-34% of the total As available from the solid. The amorphously bound As was estimated using 10 mM (NH(4))(2)C(2)O(4) and represented between 57-124% of the As available from the respective solid. Finally, the crystalline bound As was estimated using titanium citrate and this represented less than 1.5% of the As associated with the solids. A synthetic stomach/intestine extraction approach was also applied to the distribution solids. The stomach fluid was found to extract between 0.5-33.3 microg g(-1) As and 120-2,360 microg g(-1) iron (Fe). The As concentrations in the intestine fluid were between 0.02-0.04 microg g(-1) while the Fe concentration ranged from 0.06-0.7 microg g(-1) for the first six drinking water distribution solids. The elevated Fe levels associated with the stomach fluid were found to produce Fe based precipitates when the intestinal treatment was applied. Preliminary observations indicate that most of the aqueous Fe in the stomach fluid is ferric ion and the observed precipitate produced in the intestine fluid is consistent with the decreased solubility of ferric ion at the pH associated with the intestine.  相似文献   

11.
Artificially created ponds in urban areas may be important biodiversity refugia and may provide recreational services for populations. In order to obtain information on the seasonal development of the environmental conditions, water quality was determined in ten clay-pit ponds situated in the Austrian capital, Vienna. These ponds show high electrical conductivity (up to 3,000 μS cm???1), indicating elevated levels of salinity, which can be attributed to the geological setting of the underground. Furthermore, the ponds experience a gradient from low to high human pressure resulting from recreational activities (swimming, fishing, urbanisation of the pond boundaries). Results obtained from multivariate statistics methods suggest that ponds were mainly structured by salinity and by algal biomass, which can be attributed to resource supply related with eutrophication. According to their water chemistry, the ponds were classified as meso- to hypereutrophic. Stoichiometric N/P ratios suggest that phytoplankton productivity in hypereutrophic ponds is nitrogen limited, whilst algae in ponds with lower trophic levels experience growth imitation by phosphorus depletion. We eventually related environmental conditions to algal species occurrences and developed a model for algal assemblages indicating the particular trophic state at different seasons.  相似文献   

12.
Arsenic distribution in water/sediment system of Sevojno   总被引:1,自引:0,他引:1  
Arsenic is a toxic and carcinogenic element. Its toxicity depends on its oxidation state and its concentration. The aim of this paper is to determine, for the first time, the concentration levels of arsenic in water and sediment during the spring/summer period of 2009 in Sevojno, a region in West Serbia with a long industrial tradition, as well as to determine the model of arsenic distribution in water/sediment system and the level of its compatibility with the existing theoretical model. Adsorption is a continual process in the environment. It plays a very important role in the transport and fate of pollutants, especially in sediment. The adsorption of arsenic was examined using the Freundlich adsorption isotherm.  相似文献   

13.
Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.  相似文献   

14.
During drinking water treatment and distribution, chlorine reacts with organic matter occurring in water to form various chlorination by-products (CBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). This paper presents the occurrence of THMs and HAAs in different water distribution systems (DS) of the same region and their modelling for exposure assessment purposes. This study was conducted in eight DS supplying chlorinated water to the population of Québec City, Canada. These systems differ in type of water source (i.e. surface, ground or mixed water), in treatment applied at the plant, and in size and structure of the DS. Two spatio-temporal databases for THMs and HAAs were implemented, one for model development and the other for model validation. The analysis of the data demonstrates significant seasonal and spatial variations of these compounds. A multi-level statistical modelling approach was applied to estimate the ranges for occurrence of THMs and HAAs in the eight DS (i.e. a single model for the study region for each CBP species). The modelling approach integrates available or easily measurable parameters. For both THMs and HAAs, a two-level model considering a sampling-site random effect was selected among various models initially developed. The model capacity for estimating the presence of THMs and HAAs in drinking water and its usefulness for exposure assessment purposes in the studied region was demonstrated.  相似文献   

15.
The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred. This reveals that pipe replacement should be considered at these locations. These findings would be helpful in managing the water distribution system for maintaining a safe drinking water quality.  相似文献   

16.
The accurate predictions of ground ozone concentrations are required for proper management, control, and making public warning strategies. Due to the difficulties in handling phenomenological models that are based on complex chemical reactions of ozone production, neural network models gained popularity in the last decade. These models also have some limitations due to problems of overfitting, local minima, and tuning of network parameters. In this study, the predictions of daily maximum ozone concentrations are attempted using support vector machines (SVMs). The comparison between the accuracy of SVM and neural network predictions is performed to evaluate their performance. For this, the daily maximum ozone concentration data observed during 2002–2004 at a site in Delhi is utilized. The models are developed using the available meteorological parameters. The results indicated the promising performance of SVM over neural networks in predicting daily maximum ozone concentrations.  相似文献   

17.
An indicative survey has been carried out in The Netherlands investigating the presence of methyl tertiary butyl ether (MTBE) in drinking water and the corresponding sources. In total, 71 different sites used for the preparation of drinking water in The Netherlands were sampled in two successive seasons in 2001 involving the analysis of 156 samples. (ground water (n = 88), surface water (n = 17), bank filtrate water (n = 6) and drinking water (n = 45)). To combine high sample throughput with high selectivity and sensitivity, off-line purge and trap for sampling and gas chromatography mass spectrometry equipped with an automated thermal desorption sampler (TDS-GC-MS) was selected as the preferred analytical methodology. The developed procedure enabled the analysis of at least 40 samples per day and provided a limit of quantification of 2 ng l(-1). In the first period 63 samples of raw water were analyzed. Concentrations ranged between < 10 ng l(-1) and 420 ng l(-1) with a median concentration below 10 ng l(-1). The second period was focused at the re-sampling of positive locations (MTBE > 10 ng l(-1)) and a few additional drinking water utilities of which both the raw and drinking water of the utilities were analyzed. The median concentration of MTBE in the selected set of drinking water samples was 20 ng l(-1) (n = 45). At one location MTBE was found at a level of 2900 ng l(-1) caused by point source contamination of the ground water (11 900 ng l(-1)). Special attention has been paid to the quality of the results by analyzing all samples in duplicate and the analysis of control samples during each series of analyses.  相似文献   

18.
The tropical cyanobacterium Cylindrospermopsis raciborskii is of particular concern for its invasive characteristics and production of the toxin cylindrospermopsin (CYN). The present study represents the first attempt to determine the distribution of C. raciborskii and CYN in tropical China. The presence of C. raciborskii and CYN, as well as the composition of phytoplankton, was determined from a total of 86 samples from 25 urban reservoirs for drinking water supply in Dongguan City of South China. The presence of C. raciborskii was observed in 21 of the 25 reservoirs and confirmed that this species has been widely distributed in the investigated reservoirs. C. raciborskii accounted for between 0.1 and 90.3 % of the total phytoplankton biomass and contributed to the majority of the phytoplankton in some reservoirs such as Tangkengbian and Xiagongyan. Its biomass was negatively correlated with NO3 ?-N concentration and Secchi depth. Dissolved CYN was detected in more than one-half of the reservoirs with concentrations up to 8.25 μg L?1, and it positively correlated with C. raciborskii biomass. Dissolved microcystins (MCs) were detected in 12 of the 25 reservoirs with a maximum concentration 1.99 μg L?1. Our data strongly suggest that C. raciborskii and CYN could be important health hazards in urban reservoirs of South China and that more data are needed for further assessment.  相似文献   

19.
Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1–3) and downstream (5–6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.  相似文献   

20.
The effectiveness of the treatment process for the removal of pesticides in the final water supplies in Delhi has been evaluated. Samples were collected during 2000–2005 from five water treatment plants (WTPs). Analysis was carried out to identify pesticides, which are more commonly encountered in treated drinking water. In most of the treatment plants, the concentrations of lindane, total endosulphan and total DDT were significantly less in the finished water. Monitoring of these less soluble pesticide in the finished water from WTPs was done quarterly to arrive at the quality trends and to plan for the mitigation action, in case the concentration of the parameter exceeded at any site or time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号