首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

2.
长江南京段近岸沉积物和土壤中重金属分布特征分析   总被引:2,自引:1,他引:1  
通过测定沉积物和土壤中Cd、Pb、Cr、Zn、Cu、Ni 6种重金属元素的平均含量,计算其富集因子,分析长江南京段近岸沉积物和土壤中重金属的空间分布特征,结果表明,几种重金属在沉积物中的富集次序为:CdPbCr1NiCuZn,在土壤中为:CdZnCu1CrPbNi,除Zn和Cu外,其他几种金属在沉积物中的富集程度高于土壤,同时Cd的含量超过土壤环境质量三级标准。以Cd和Pb为例分析了重金属含量与沉积物粒级之间的关系,回归分析显示,Cd、Pb的含量与颗粒物的粒级呈显著的相关性,与细颗粒物的含量有密切关系,细颗粒携带的重金属,在长江水力分选作用下到达下游,成为沉积物中重金属的主要来源。  相似文献   

3.
为了解渭河陕西段表层沉积物重金属的污染特征,采用ICP-MS分析了13个采样断面表层沉积物中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn 8种重金属的含量,并对其来源和生态风险进行了评价。结果表明:渭河陕西段8种重金属的平均含量顺序依次为Mn > Zn > Cr > Cu > Ni > Pb > As > Cd;除Ni外的其余7种重金属的平均含量均超过陕西省A层土壤背景值。各断面表层沉积物重金属的潜在生态风险指数(RI)介于111.4~7 043.7,其中23.1%的断面有极强生态风险,46.2%的断面为中等生态风险,其余为轻微生态风险。Cd污染最为严重,对各断面的潜在生态风险介于较强生态风险与极强生态风险之间,对RI的贡献平均为85.2%;其余7种重金属在所有断面均属于轻微生态危害。渭河陕西段表层沉积物As、Cd、Cu和Zn主要为工业与农业来源;Cr和Ni主要为自然来源;Pb和Mn与城市污水和交通污染来源有关。  相似文献   

4.
Heavy metals in sediments from Baisha Bay, Nan'ao Island, one of Guangdong Province's largest mariculture bases in Southern China, were investigated. The results display that the concentrations of 6 heavy metals from surface sediments were 0.040-0.220 (Cd), 24.22-39.61 (Pb), 25.30-42.66 (Cr), 10.83-19.54 (Ni), 15.06-39.24 (Cu) and 55.12-141.73 mg kg(-1) (Zn), respectively. The highest concentrations and the greatest increasing rates of heavy metals were found in a sediment core in a fish cage culture area due to receiving sewage discharge, uneaten fish bait, and boat gasoline combustion. Cd was preferentially associated with the acid-soluble fraction and Pb mainly with the reducible fraction in surface sediments. Meanwhile, Cd and Pb displayed greatest labile fractions, indicating anthropogenic origin. A principal component analysis (PCA) revealed three groupings (Cd; Cr, Ni and Cu; Pb and Zn) that mainly result from different distributions of the metals in the various fractions. The ecological risk of the polluted sediments stemmed mainly from Cd, and from Pb and Cu to a lesser degree. It is suggested that the density of fish-stocking be controlled, periodic movement of rafts (cages) be introduced, and the total numbers of net-cages and human activities in the mariculture zones be restricted. in order to facilitate the recovery of the polluted sediment.  相似文献   

5.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

6.
In this study, the longitudinal distribution of heavy metals (including As, Cd, Cr, Cu, Ni, Pb, and Zn) from sediment of a 70-km long canyon reservoir in Yunnan Province was investigated and their potential ecological risks were assessed. The results indicated that the concentration of all the detected metals in the sediments that was sampled near the dam was much higher than that sampled from upstream far from the dam. The geoaccumulation index (I geo) and contamination factors (CF) suggested that Cd was the most important contamination factor, followed by As and Zn, while the concentration of Cr, Cu, Ni, and Pb was at uncontaminated levels. Cd posed a high potential ecological risk in the sediment. Furthermore, potential ecological risk is significantly correlated with the distance from the dam.  相似文献   

7.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

8.
The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.  相似文献   

9.
Sampling of the offshore seabed sediments of southwestern part of the Caspian Sea was carried out by gravity corer in order to study heavy metal concentration and the physicochemical factors controlling their distribution in the fine-grained fraction. The grain size distribution, amount, and type of clay minerals, total organic carbon (TOC) content, and Eh–pH of the sediments were determined. The average concentrations of the heavy metals in ppm are Mn (563), Cu (207.5), Sr (187), Zn (94), Pb (26.3), Ni (14.5), Co (11.5), Cd (2.56), and Ag (1.04) in their order of abundances. Co and Zn mostly indicate increase in silt-size fraction of the sediments suggesting their probable detrital provenance but the Mn, Ni, Cu, Sr, Pb, Cd, and Ag concentrations show a similar trend to distribution of the clay-size fraction. The concentrations of Mn, Co, and Cd increase with increase in the TOC content but the Cu, Pb, Ni, Ag, and Sr concentrations decrease with increase of the TOC content. The amounts of Zn, Cu, Sr, Pb, Cd, and Ag increase with increase in the CaCO3 content. The calculated enrichment factor indicates that the sediments are very strong to extremely enriched in Ag, significantly enriched in Cu and Cd, and depleted to mineral for Pb, Sr, Co, Ni, and Zn. Variations of the Cu, Sr, Cd, Ag, and Pb concentrations are similar to the clay and CaCO3 distributions.  相似文献   

10.
为了解北方某水库重金属污染状况,采用BCR连续提取法对该水库表层沉积物中Cu、Pb、Zn、Cd的赋存形态进行了分析,对其含量及空间分布进行了研究,结合重金属总量讨论了各元素的潜在环境风险。结果表明,该水库表层沉积物中Cu、Pb、Zn、Cd的平均质量比分别为65.20 mg/kg、36.69 mg/kg、137.5 mg/kg、2.38 mg/kg,与该地区土壤元素背景值、该地区水系沉积物平均值及全国水系沉积物平均值相比,4种重金属元素均有一定程度的累积,其中Cd累积最为严重。形态分析结果表明,Cd主要以醋酸可提取态及可还原态存在,具有很高的环境风险;Pb主要以极高比例的可还原态存在,潜在风险较高;Zn和Cu存在较大比例的酸可提取态及可还原态,也具有一定程度的潜在风险。各元素生物有效性即可提取态含量排序为:Cd>Cu>Pb>Zn。  相似文献   

11.
Sixty-seven surface marine sediment samples in the <63 ?? m fraction collected from the coast of Sfax (Tunisia) were analyzed by inductively coupled plasma-atomic emission spectrometry for seven heavy metals (Pb, Ni, Cu, Cr, Zn, Cd, and Fe). Metal concentrations were compared with natural values, marine sediment quality standards, and also with other results concerning sediments from several Mediterranean coasts. The study of their spatial distributions refined by complementary approaches including principal component analysis, enrichment factors, and geoaccumulation index showed a significant impact of multiple anthropogenic sources. These included industrial sources and municipal discharges of the urban Sfax and also non-controlled discharges in rural zones close to the coastline. Moderate pollution of sediments, especially by Pb, Zn, and Ni, was shown to exist in localized sites. Besides, it was shown that other sites, slightly to highly enriched in terms of Cu, Cr, and Cd, are characterized by a quality of sediments varying from unpolluted to moderately polluted.  相似文献   

12.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

13.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

14.
Lake Sapanca is exposed to heavy urbanization and industrialization because of its natural beauty and its proximity to the metropolitan İstanbul, Turkey. In this study, it was aimed to investigate seasonal changes of some heavy metals (Pb, Cr, Cu, Mn, Ni, Zn and Cd) concentration of surface sediment. Nine different stations were chosen as sampling points. Samples were taken every three months and the seasonal and annual average concentration of the elements were determined. Seasonal highest values of heavy metals were observed as follows; Cr, Cu, Mn, Ni and Zn in Summer, Cd in Autumn. There was no seasonal difference for Pb, Cr and Cd. It seems that Lake Sapanca has not been polluted yet. However, it was found that Cu and Ni concentrations in surface sediment exceed lowest effect level.  相似文献   

15.
The assessment of marine pollution due to metals was made for surficial sediments sampled from 20 sites along Mediterranean coast of Egypt. The samples were dried, acid digested and analyzed for leachable and total heavy metal contents (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by flame atomic absorption spectrophotometer (air–acetylene) with deuterium background correction. Evaluation of the heavy metals pollution status was carried out using enrichment factors (EFs), the effect range-low (ERL) and the effect range-median (ERM). The study showed high concentrations of Cd, Co, Pb, Ni and moderate concentrations of Cr, Cu and Mn were contaminated in the sediments of studied sites. The results of Spearman correlation, factor and cluster analysis of the heavy metals analyzed in the collected sediment were discussed. The main source of contamination is the offshore oil field and industrial wastes, which arise due to the ineffective and inefficient operation equipments, illegal discharge and lack of supervision and prosecution of offenders.  相似文献   

16.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

17.
濮阳工业园区土壤重金属背景值及质量评价   总被引:6,自引:5,他引:1  
为了研究濮阳工业园区土壤重金属背景值,采集了该园区及周边土壤46个样品,测定了土壤中重金属Cu、Zn、Pb、Cr、Cd和Ni的含量,并采用污染负荷指数法和潜在生态危害指数法对土壤质量进行了评价。结果表明:工业园区土壤中Cu、Zn、Pb、Cr、Cd、Ni的背景值分别为36.2、118、49.2、40.6、0.125、15.3 mg/kg;Cu、Zn、Pb、Cd的含量高于河南省土壤重金属背景值;Pb为极强污染,Cu、Zn、Cd为中等污染,重金属污染程度从重到轻的排序为PbZnCuCd,表明濮阳工业园区土壤重金属具有轻微的潜在生态危害。  相似文献   

18.
The contents of heavy metals (Fe, Mn, Pb, Cu, Cd, and Hg) dissolved in water and suspended solids of Gökova Bay—partly and fully sampled in 2005 and 2006, respectively—are quite higher than the average values encountered in uncontaminated sea water. The high concentrations are associated with terrestrial inputs from the mining zones and anthropogenic (domestic + industrial) sources. Moreover, the distribution of Fe and Cu is affected by primary production because these elements function as nutrients in biological activities. The Cr, Ni, and Fe concentrations of surface sediments are above the shale average. The Cr and Ni contents of surface sediments representative of river mouths strongly correlate with total phosphorus contents. In a sulfide-poor environment, Pb and Cu were concentrated at a higher ratio in surface sediments than Cd, probably due to higher stabilities of their surface complexes with amorphous iron oxides and clay minerals existing as major components in the sediments. The exceptional enrichment of Zn may be attributed to double oxide formation with amorphous iron oxides in sediments. The high metal values are most probably caused by terrestrial inputs from anthropogenic sources and the mining zones at the southeast part of the bay. The Al, Mn, Pb, Cu, Zn, and Hg contents are below the shale average. The low values have possibly originated from the coarse-grained sandy sediments having a low affinity for metals. There are no distinct differences in the metal distributions in water and suspended matter between the years 2005 and 2006 in the bay, probably due to low sedimentation rates.  相似文献   

19.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

20.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号