首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
先利用C-18固相萃取小柱富集大港油田港东联合处理站污水处理站的采油废水中16种多环芳烃(PAHs,即萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘、二苯并[a,h]蒽和苯并[g,h,i]苝),再用气相色谱/质谱(GC/MS)分析测定其浓度,以评价PAHs的去除率和生态风险。结果表明:(1)采油废水经处理后,COD、石油类去除率分别达到82.27%、91.06%;外排水COD、石油类达到《污水综合排放标准》(GB 8978—1996)一级标准要求,优于中国采油废水处理的一般水平。(2)采油废水主要以2、3环的PAHs为主,约占总量的93%以上。(3)苯并[a]芘超过《地表水环境质量标准》(GB 3838—2002)中限值。(4)处理前的采油废水中蒽、菲和苯并[a]芘具有一定的生态风险;处理后的外排水中萘、蒽、菲、荧蒽、苯并[a]芘的暴露浓度(PEC)/预测无效应浓度(PNEC)均小于1,目前尚未对环境造成威胁。但是8种PAHs(苊烯和苯并类PAHs除外)总和表现出较大的毒性,需要引起重视。  相似文献   

2.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

3.
Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October–November and wheat-residue burning in April–May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4—6 ring PAHs are considerably higher compared to 2–3 ring PAHs in the ambient particulate matter (PM2.5). The crossplots of PAH isomer ratios, fluoranthene?/?(fluoranthene?+?pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene?+?benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions.  相似文献   

4.
Profiles of PAH emission from steel and iron industries   总被引:5,自引:0,他引:5  
Yang HH  Lai SO  Hsieh LT  Hsueh HJ  Chi TW 《Chemosphere》2002,48(10):3777-1074
In order to characterize the polycyclic aromatic hydrocarbons (PAHs) emission from steel and iron industries, this study measured the stack emission of twelve steel and iron plants in southern Taiwan to construct a set of source fingerprints. The study sampled the emissions by the USEPA's sampling method 5 with the modification of Graseby for the gas and particulate phase PAH and, then, used Hewlett-Packard 5890 gas chromatograph equipped with mass spectrometer detector to analyze the samples. The steel and iron industries are classified into three categories on the basis of auxiliary energy source: Category I uses coal as fuel, Category II uses heavy oil as fuel and Category III uses electric arc furnace. The pollution source profiles are obtained by averaging the ratios of individual PAH concentrations to the total concentration of 21 PAHs and total particulate matter measured in this study. Results of the study show that low molecular weight PAHs are predominant in gas plus particulate phase for all three categories. For particulate phase PAHs, however, the contribution of large molecular weight compounds increases. Two-ring PAHs account for the majority of the mass, varying from 84% to 92% with an average of 89%. The mass fractions of 3-, 4-, 5-, 6-ring PAHs in Category I are found to be more than those of the other two categories. The mass of Category III is dominated by 7-ring PAHs. Large (or heavy) molecular weight PAHs (HMW PAHs) are carcinogenic. Over all categories, these compounds are less than 1% of the total-PAH mass on the average. The indicatory PAHs are benz[a]anthracene, benzo[k]fluoranthene, benzo[ghi]perylene for Category I, benzo[a]pyrene, acenaphthene, acenaphthylene for Category II and coronene, pyrene, benzo[b]chrycene for Category III. The indicatory PAHs among categories are very different. Thus, dividing steel and iron industry into categories by auxiliary fuel is to increase the precision of estimation by a receptor model. Average total-PAH emission factors for coal, heavy oil and electric arc furnace were 4050 μg/kg-coal, 5750 μg/l-oil, 2620 μg/kW h, respectively. Carcinogenic benzo[a]pyrene for gas plus particulate phase was 2.0 g/kg-coal, 2.4 μg/l-oil and 1.4 μg/kW h for Category I, II and III, respectively.  相似文献   

5.
The concentrations of 15 priority PAHs were determined in the atmospheric gaseous and particulate phases from nine sites across Assiut City, Egypt. While naphthalene, acenaphthene, and fluorene were the most abundant in the gaseous phase with average concentrations of 377, 184, and 181 ng/m3, benzo[b]fluoranthene, chrysene, and benzo[g,h,i]perylene showed the highest levels in the particulate phase with average concentrations of 76, 6, and 52 ng/m3. The average total atmospheric concentration of target PAHs (1,590 ng/m3) indicates that Assiut is one of the highest PAH-contaminated areas in the world. Statistical analysis revealed a significant difference between the levels of PAHs in the atmosphere of urban and suburban sites (P?=?0.029 and 0.043 for gaseous and particulate phases, respectively). Investigation of diagnostic PAH concentration ratios revealed vehicular combustion and traffic exhaust emissions as the major sources of PAHs with a higher contribution of gasoline rather than diesel vehicles in the sampled areas. Benzo[a]pyrene has the highest contribution (average?=?32, 4 % for gaseous and particulate phases) to the total carcinogenic activity (TCA) of atmospheric PAHs. While particulate phase PAHs have higher contribution to the TCA, gaseous phase PAHs present at higher concentrations in the atmosphere are more capable of undergoing atmospheric reactions to form more toxic derivatives.  相似文献   

6.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

7.
ABSTRACT

Benzo[b]fluoranthene (B[b]F) was used in relative abundance ratios (RARs), a parameter obtained by dividing the concentration of individual polycyclic aromatic hydrocarbons (PAHs) found in a given sample by the concentration of B[b]F in the same sample. The B[b]F RARs were derived for PAH concentrations measured at stacks and sampling stations in the vicinity of two Söderberg aluminum horizontal stud smelters (HSSs). The samples collected were analyzed by high-performance liquid chromatography using UV and fluorescence detection. A total of 15 PAHs were analyzed, but, due to the inefficiency of the sampling method used in collecting gaseous PAHs, only particulate PAHs were considered. Comparisons between the B[b]F RARs obtained simultaneously at the source (stack) and those obtained at sampling stations at the two smelters showed that B[b]F degrades more slowly than or at the same rate as most other particulate PAHs monitored. Twenty-three months of urban sampling in the vicinity of one of the aluminum HSSs are also presented, and the results indicate that B[b]F is more stable than all other particulate PAHs investigated. Sampling conducted during a smelter shutdown period confirmed that B[b]F was a much better marker of this source than was benzo[a]pyrene (B[a]P), the usual indicator. The remarkable stability of the benzo[k]fluoranthene (B[k]F)/B[b]F ratio is also discussed.  相似文献   

8.
Benzo[b]fluoranthene (B[b]F) was used in relative abundance ratios (RARs), a parameter obtained by dividing the concentration of individual polycyclic aromatic hydrocarbons (PAHs) found in a given sample by the concentration of B[b]F in the same sample. The B[b]F RARs were derived for PAH concentrations measured at stacks and sampling stations in the vicinity of two S?derberg aluminum horizontal stud smelters (HSSs). The samples collected were analyzed by high-performance liquid chromatography using UV and fluorescence detection. A total of 15 PAHs were analyzed, but, due to the inefficiency of the sampling method used in collecting gaseous PAHs, only particulate PAHs were considered. Comparisons between the B[b]F RARs obtained simultaneously at the source (stack) and those obtained at sampling stations at the two smelters showed that B[b]F degrades more slowly than or at the same rate as most other particulate PAHs monitored. Twenty-three months of urban sampling in the vicinity of one of the aluminum HSSs are also presented, and the results indicate that B[b]F is more stable than all other particulate PAHs investigated. Sampling conducted during a smelter shutdown period confirmed that B[b]F was a much better marker of this source than was benzo[a]pyrene (B[a]P), the usual indicator. The remarkable stability of the benzo[k]fluoranthene (B[k]F)/B[b]F ratio is also discussed.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

10.
Real-world vehicle emission factors for seventeen gas and particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in the Shing Mun Tunnel, Hong Kong during summer and winter 2003. Naphthalene, acenaphthylene, and acenaphthene were the most abundant gas PAHs while fluoranthene and pyrene were the most abundant in the particle phase. Most (98%) of the gas PAHs consisted of two- and three-aromatic rings whereas most of the particle-phase PAHs were in four- (~60%) and five-ring (~17%) for fresh exhaust emissions. Average emission factors for the gas- and particle PAHs were 950–2564 μg veh?1 km?1 and 22–354 μg veh?1 km?1, respectively. Good correlations were found between diesel markers (fluoranthene and pyrene; 0.85) and gasoline markers (benzo[ghi]perylene and indeno[1,2,3-cd]pyrene; 0.96). Higher PAH emission factors were associated with a higher fraction of diesel-fueled vehicles (DV) passing through the tunnel. Separate emission factors were determined from diesel and non-diesel exhaust by the regression intercept method. The average PAH emission factor (i.e., sum of gas and particle phases) from DV (3085 ± 1058 μg veh?1 km?1) was ~5 times higher than that from non-diesel-fueled vehicles (NDV, 566 ± 428 μg veh?1 km?1). Ratios of DV to NDV emission factors were high for diesel markers (>24); and low for gasoline markers (<0.4).  相似文献   

11.

Objective

Concentrations of polycyclic aromatic hydrocarbons (PAHs) in street dust in the Tamale metropolis, Ghana, have been measured in this study.

Results

The concentrations of the various types of PAHs identified in street dust samples from high vehicular traffic density in the metropolis are as follows: naphthalene, 10,000 μg/kg; acenaphthylene, 13,000 μg/kg; acenaphthene, 76,000 μg/kg; fluorene, 18,900 μg/kg; phenanthrene, 40,000 μg/kg; anthracene, 21,000 μg/kg; fluoranthene, 35,200 μg/kg; pyrene, 119,000 μg/kg; benzo[a]anthracene, 17,700 μg/kg; chrysene, 10,600 μg/kg; benzo[k]fluoranthene, 18,700 μg/kg; benzo[a]pyrene, 10,900 μg/kg and benzo[g, h, i]perylene, 21,000 μg/kg. Calculation of the phenanthrene/anthracene ratio indicated that the PAHs identified in this study were from vehicular fallout as the ratio was less than 10.

Conclusion

It is clear from the results of the study that road users in the Tamale metropolis, especially hawkers, are exposed to the harmful effects of PAHs, and this suggests the need for the establishment of mitigation measures by the regulatory agencies.
  相似文献   

12.
The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.  相似文献   

13.
During the 2003 Chinese Arctic Research Expedition from the Bohai Sea to the high Arctic (37–80°N) aboard the icebreaker Xuelong (Snow Dragon), air samples were collected using a modified high-volume sampler that pulls air through a quartz filter and a polyurethane foam plug (PUF). These filters and PUFs were analyzed for particulate phase and gas phase polycyclic aromatic hydrocarbons (PAHs), respectively, in the North Pacific Ocean and adjacent Arctic region. The ∑PAHs (where ∑=15 compounds) ranged from undetectable level to 4380 pg m−3 in the particulate phase and 928–92 600 pg m−3 in the gas phase, respectively. A decreasing latitudinal trend was observed for gas-phase PAHs, probably resulting from temperature effects, dilution and decomposition processes; particulate-phase PAHs, however, showed poor latitudinal trends, because the effects of temperature, dilution and photochemistry played different roles in different regions from middle-latitude source areas to the high latitudes. The ratios of PAH isomer pairs, either conservative or sensitive to degradation during long-range transport, were employed to interpret sources and chemical aging of PAHs in ocean air. In this present study the fluoranthene/pyrene and indeno[123-cd]pyrene/benzo[ghi]pyrene isomer pairs, whose ratios are conservative to photo-degradation, implies that biomass or coal burning might be the major sources of PAHs observed over the North Pacific Ocean and the Arctic region in the summer. The isomer ratios of 1,7/(1,7+2,6)-DMP (dimethylphenanthrene) and anthracene/phenanthrene, which are sensitive to aging of air masses, not only imply chemical evolving of PAHs over the North Pacific Ocean were different from those over the Arctic, but reveal that PAHs over the Arctic were mainly related to coal burning, and biomass burning might have a larger contribution to the PAHs over the North pacific ocean.  相似文献   

14.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

15.
Hydrocarbon deposition and soil microflora as affected by highway traffic.   总被引:3,自引:0,他引:3  
The proximity of a busy highway (90,000 vehicles/day) increased the amount of polycyclic aromatic hydrocarbons (PAHs) in soil at the depth of 5-15 cm from 106 ng/g as a grassland background to 3095 ng/g dry soil at the highway verge (a sum of 10 PAH species). The PAH concentration was related to the distance from the source and exhibited a biphasic character, which is interpreted in terms of bimodal distribution of the exhaust microparticles with different rates of deposition. Similarly, the tendency of benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene to decrease their proportion with distance from the highway, in contrast to phenanthrene, fluoranthene, pyrene, benzo(a)pyrene, and benzo(g,h,i)perylene, was attributed to their prevalent localisation on the heavier particle fraction. The abundance of bacteria (8.33 x background) and fungi (3.17 x background) close to the highway is thought to be a consequence of hydrocarbon deposition from the traffic that serves as a significant energetic input into the soil. The elevated concentrations of hydrocarbon substrates, as indicated by PAHs, increased both the absolute and relative numbers of the microbial degraders of diesel fuel, biphenyl, naphthalene, and pyrene. Their maximum numbers at 0.5-1.5 m from the pavement reached 1.3 x 10(4), 1.2 x 10(5), 1.1 x 10(4), and 6.6 x 10(3) colony-forming units (CFU) or infection units per gramme dry soil, respectively. On the other hand, the number of anthracene degraders (1.1 x 10(3) CFU per g dry soil) remained close to the detection limit of the enumeration technique used (0.1-0.2 x 10(3) per g dry soil), consistently with the absence of anthracene and higher linear PAHs in the investigated soil samples. The amounts of persisting PAHs justify artificial inoculation with effective degrader strains in the vicinity of motorways.  相似文献   

16.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

17.
The purpose of this study was to characterize size distributions of atmospheric polycyclic aromatic hydrocarbons (PAHs) with 4–6 rings at the roadside in Ho Chi Minh City, Vietnam. Ten PAHs (fluoranthene, pyrene, triphenylene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) in atmospheric particulate matters (PM) at the roadside were measured in the dry and rainy seasons in 2005 at Ho Chi Minh City, using a low-pressure cascade impactor. The PM were separated into nine fractions by their aerodynamic diameter, i.e. >9.0, 9.0–5.8, 5.8–4.7, 4.7–3.3, 3.3–2.1, 2.1–1.1, 1.1–0.7, 0.7–0.4 and <0.4 μm (a final filter). PAHs were analyzed by high-performance liquid chromatography with fluorescence detection. Total PAHs measured were higher in the rainy season than in the dry season. The mass of coarse particles occupied a higher fraction than that of fine particles in both seasons. Total PAHs were mainly concentrated in particles with aerodynamic diameter smaller than 0.4 μm. The particle size distributions of PAHs investigated were bi-modal with a peak in fine particle mode (<2.1 μm) and another peak in coarse particle mode (>2.1 μm). Generally, 5,6-ring PAHs associated mainly with fine particles and 4-ring PAHs spread out in both fine and coarse particles.  相似文献   

18.
Estimates of standing biomass and fluxes of biomass in a mixed-deciduous woodland were derived, and used with results for concentrations of seven polycyclic aromatic hydrocarbons (PAHs) in different compartments of the woodland system to quantitatively assess some of the key fluxes and burdens of PAHs in this complex system. We quantified PAH burdens in air, in leaves of three deciduous tree species, in leaf litter and in soil, and uptake of PAHs by the tree leaves; PAH fluxes in litterfall, and deposition to the litter layer on the woodland floor during winter were calculated from these data. Air burdens exhibited marked seasonal variations for all compounds, with lowest values in summer when combustion-related emissions were low. Leaves did not accumulate large burdens of PAHs while on the trees and consequently, litterfall-associated fluxes of PAHs were small, representing only a fraction of the burdens in the litter layer to which they were deposited. Higher PAH burdens in air in winter, combined with the organic-matter-rich nature of the litter layer, are thought to be responsible for fluxes of PAHs to the litter layer in winter being 20-170 times the peak litterfall fluxes. The soil compartment was calculated to contain 25 years' worth of deposition of benzo[ghi]perylene, the most recalcitrant PAH in this study. Storage quotients for fluoranthene, pyrene, benzo[k]fluoranthene and benzo[a]pyrene burdens in soil represented 7-10 years' worth of deposition, while fluorene and phenanthrene storage in soil approached unity with inputs (1 and 3 years' worth of deposition, respectively). The relative importance of storage and loss processes was therefore closely related to the physico-chemical properties of the PAH, and is discussed in relation to the cycling of carbon in the woodland.  相似文献   

19.
Levels of PAHs in soil and vegetation samples from Tarragona County, Spain   总被引:20,自引:0,他引:20  
The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 24 soil and 12 wild chard samples collected in Tarragona County (Catalonia, Spain), an area with an important number of chemical and petrochemical industries. Samples were also collected in urban/residential zones and in presumably unpolluted sites (control samples). In soils, the sum of the 16 PAHs ranged between 1002 and 112 ng/g (dry weight) for samples collected near chemical industries and unpolluted sites, respectively. With the exception of acenaphthylene, acenaphthene, anthracene and benzo[k]fluoranthene, no significant differences in the levels of the remaining PAHs were found among the different zones of sample collection. In chard samples, the highest value (sum of 16 PAHs) was observed in the residential area, followed by the industrial and the unpolluted zones, with concentrations of 179, 58 and 28 ng/g (dry weight), respectively. In general terms, the current PAH concentrations in soil and vegetation are lower than the levels reported in a number of investigations from different regions and countries. They are also below the maximum PAH concentrations allowed by the Catalan legislation for different uses of soil.  相似文献   

20.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号