首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Smith RA  Mooney KA  Agrawal AA 《Ecology》2008,89(8):2187-2196
Coexistence of host-specific herbivores on plants is believed to be governed by interspecific interactions, but few empirical studies have systematically unraveled these dynamics. We investigated the role of several factors in promoting coexistence among the aphids Aphis nerii, Aphis asclepiadis, and Myzocallis asclepiadis that all specialize on common milkweed (Asclepias syriaca). Competitive exclusion is thought to occur when interspecific competition is stronger than intraspecific competition. Consequently, we investigated whether predators, mutualists, or resource quality affected the strength of intra- vs. interspecific competition among aphids in factorial manipulations of competition with exposure to predation, ants, and variable plant genotypes in three separate experiments. In the predation x competition experiment, predators reduced aphid per capita growth by 66%, but the strength of intra- and interspecific competition did not depend on predators. In the ants x competition experiment, ants reduced per capita growth of A. nerii and M. asclepiadis (neither of which were mutualists with ants) by approximately one-half. In so doing, ants ameliorated the negative effects of these competitors on ant-tended A. asclepiadis by two-thirds, representing a novel benefit of ant-aphid mutualism. Nevertheless, ants alone did not explain the persistence of competitively inferior A. asclepiadis as, even in the presence of ants, interspecific competition remained stronger than intraspecific competition. In the plant genotype x competition experiment, both A. asclepiadis and M. asclepiadis were competitively inferior to A. nerii, with the strength of interspecific competition exceeding that of intraspecific competition by 83% and 23%, respectively. Yet these effects differed among milkweed genotypes, and there were one or more plant genotypes for each aphid species where coexistence was predicted. A synthesis of our results shows that predators play little or no role in preferentially suppressing competitively dominant A. nerii. Nonetheless, A. asclepiadis benefits from ants, and A. asclepiadis and M. asclepiadis may escape competitive exclusion by A. nerii on select milkweed genotypes. Taken as a whole, the coexistence of three host-specific aphid species sharing the same resource was promoted by the dual action of ants as antagonists and mutualists and by genetic diversity in the plant population itself.  相似文献   

2.
Pfennig DW  Rice AM  Martin RA 《Ecology》2006,87(3):769-779
We investigated the roles of resource availability and phenotypic plasticity in promoting ecological character displacement (i.e., trait evolution stemming from resource competition between species). Because ecological character displacement generates new populations that differ in resource use, this process should only occur when exploitable resources are available. We tested this hypothesis in two species of spadefoot toads (Spea bombifrons and S. multiplicata) whose tadpoles use phenotypic plasticity to develop into either an omnivore morph, which specializes on detritus, or a physically distinctive carnivore morph, which specializes on shrimp. Both species grow best on shrimp, but when reared together, S. bombifrons outcompetes S. multiplicata for shrimp and S. multiplicata outcompetes S. bombifrons for detritus. We found that when each species occurred alone in the field, they produced similar proportions of omnivores and carnivores. When the two species occurred together, however, they underwent ecological character displacement in larval development, with S. multiplicata producing mostly omnivores, and S. bombifrons producing mostly carnivores. We combined observations of natural populations with experiments to evaluate whether such character displacement was only possible when both shrimp and detritus were relatively abundant. Mixed-species ponds contained abundant detritus and shrimp, in contrast with nearby pure-species ponds, which were deficient in one resource. Experiments revealed that S. multiplicata competed poorly when detritus was rare and that S. bombifrons competed poorly when shrimp was rare. In nature, when one of these two resources was scarce, one species was missing, perhaps through competitive exclusion by the species that was the superior competitor for the remaining resource. Thus, ecological character displacement and, therefore, coexistence of close competitors, was only possible when diverse resources were available. Finally, even if exploitable resources are available, character displacement is not guaranteed to transpire if species cannot utilize such resources expeditiously. Phenotypic plasticity provides a general and important mechanism for facilitating resource partitioning. Thus, by facilitating shifts in resource use, phenotypic plasticity and ecological opportunity may often interact to promote divergence and coexistence of competitors.  相似文献   

3.
Plant uptake of inorganic and organic nitrogen: neighbor identity matters   总被引:5,自引:0,他引:5  
Miller AE  Bowman WD  Suding KN 《Ecology》2007,88(7):1832-1840
The importance of interspecific competition as a cause of resource partitioning among species has been widely assumed but rarely tested. Using neighbor removals in combination with 15N tracer additions in the field, we examined variation among three alpine species in the uptake of 15N-NH4+, 15N-NO3-, and 15N-13C-[2]-glycine in intact neighborhoods, when paired with a specific neighbor, and when all neighbors were removed. Species varied in the capacity to take up 15N-labeled NH4+, NO3-, and glycine in intact neighborhoods and in interspecific pairs. When interspecific neighbor pairs were compared with no neighbor controls, neighbors reduced 15N uptake in target species by as much as 50%, indicating competition for N. Furthermore, neighbor identity influenced the capacity of species to take up different forms of N. Thus, competition within interspecific neighbor pairs often caused reduced uptake of a particular form of N, as well as shifts to uptake of an alternative form of N. Such shifts in resource use as a result of competition are an implicit assumption in studies of resource partitioning but have rarely been documented. Our study suggests that plasticity in the uptake of different forms of N may be a mechanism by which cooccurring plants reduce competition for N.  相似文献   

4.
Kahmen A  Renker C  Unsicker SB  Buchmann N 《Ecology》2006,87(5):1244-1255
The relationship between plant diversity and productivity has largely been attributed to niche complementarity, assuming that plant species are complementary in their resource use. In this context, we conducted an 15N field study in three different grasslands, testing complementarity nitrogen (N) uptake patterns in terms of space, time, and chemical form as well as N strategies such as soil N use, symbiotic N fixation, or internal N recycling for different plant species. The relative contribution of different spatial, temporal, and chemical soil N pools to total soil N uptake of plants varied significantly among the investigated plant species, within and across functional groups. This suggests that plants occupy distinct niches with respect to their relative N uptake. However, when the absolute N uptake from the different soil N pools was analyzed, no spatial, temporal, or chemical variability was detected, but plants, and in particular functional groups, differed significantly with respect to their total soil N uptake irrespective of treatment. Consequently, our data suggest that absolute N exploitation on the ecosystem level is determined by species or functional group identity and thus by community composition rather than by complementary biodiversity effects. Across functional groups, total N uptake from the soil was negatively correlated with leaf N concentrations, suggesting that these functional groups follow different N use strategies to meet their N demands. While our findings give no evidence for a biodiversity effect on the quantitative exploitation of different soil N pools, there is evidence for different and complementary N strategies and thus a potentially beneficial effect of functional group diversity on ecosystem functioning.  相似文献   

5.
Harrison KA  Bol R  Bardgett RD 《Ecology》2007,88(4):989-999
The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms vary over time. Our data suggest that coexisting plants can outcompete microbes for a variety of N forms, but that such plant species show similar preferences for inorganic over organic N.  相似文献   

6.
Laird RA  Schamp BS 《Ecology》2008,89(1):237-247
Competitive intransitivity, a situation in which species' competitive ranks cannot be listed in a strict hierarchy, promotes species coexistence through "enemy's enemy indirect facilitation." Theory suggests that intransitivity-mediated coexistence is enhanced when competitive interactions occur at local spatial scales, although this hypothesis has not been thoroughly tested. Here, we use a lattice model to investigate the effect of local vs. global competition on intransitivity-mediated coexistence across a range of species richness values and levels of intransitivity. Our simulations show that local competition can enhance intransitivity-mediated coexistence in the short-term, yet hinder it in the long-term, when compared to global competition. This occurs because local competition slows species disaggregation, allowing weaker competitors to persist longer in the shifting spatial refuges of intransitive networks, enhancing short-term coexistence. Conversely, our simulations show that, in the long-term, local competition traps disaggregated species in unfavorable areas of the competitive arena, where they are excluded by superior competitors. As a result, in the long-term, global intransitive competition allows a greater number of species to coexist than local intransitive competition.  相似文献   

7.
Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.  相似文献   

8.
Carroll IT  Cardinale BJ  Nisbet RM 《Ecology》2011,92(5):1157-1165
The frequently observed positive correlation between species diversity and community biomass is thought to depend on both the degree of resource partitioning and on competitive dominance between consumers, two properties that are also central to theories of species coexistence. To make an explicit link between theory on the causes and consequences of biodiversity, we define in a precise way two kinds of differences among species: niche differences, which promote coexistence, and relative fitness differences, which promote competitive exclusion. In a classic model of exploitative competition, promoting coexistence by increasing niche differences typically, although not universally, increases the "relative yield total", a measure of diversity's effect on the biomass of competitors. In addition, however, we show that promoting coexistence by decreasing relative fitness differences also increases the relative yield total. Thus, two fundamentally different mechanisms of species coexistence both strengthen the influence of diversity on biomass yield. The model and our analysis also yield insight on the interpretation of experimental diversity manipulations. Specifically, the frequently reported "complementarity effect" appears to give a largely skewed estimate of resource partitioning. Likewise, the "selection effect" does not seem to isolate biomass changes attributable to species composition rather than species richness, as is commonly presumed. We conclude that past inferences about the cause of observed diversity-function relationships may be unreliable, and that new empirical estimates of niche and relative fitness differences are necessary to uncover the ecological mechanisms responsible for diversity-function relationships.  相似文献   

9.
Elmendorf SC  Moore KA 《Ecology》2007,88(10):2640-2650
There is currently no consensus on how physical and biological factors affect competitive intensity. Tests of whether competitive intensity varies along axes of environmental change have commonly been conducted in systems with a single strong environmental gradient, such as productivity, a soil resource, or an environmental stress. Frequently, these same axes are associated with changes in species composition, yet few studies have asked whether shifts in the identity of competitors affect competitive intensity. We ask whether resources (nutrients, water), stressors (heavy metals, Ca:Mg ratio), productivity (aboveground biomass), or species identity (an ordination axis of plant community composition) were the best predictors of the intensity of competition in a heterogeneous grassland landscape that included multiple independent environmental gradients. The reproductive fitness of six annual plant species was measured in the presence and absence of competitors and used to calculate relative interaction intensity (RII). We found that RII was best predicted by community composition. Nutrient availability was also important, and a post hoc test showed that competitive intensity was best explained by the combined effects of community composition and nutrient availability. We argue that community composition may be the most effective metric for predicting competitive intensity in many ecosystems because it includes both the competitive effects of the local community and information about covarying environmental characteristics.  相似文献   

10.
Gundale MJ  Hyodo F  Nilsson MC  Wardle DA 《Ecology》2012,93(7):1695-1706
Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche breadth of the three shrub species are often affected by neighbors, and further that both the identity of neighbors and site fertility strongly determine whether these interactions are positive, negative, or neutral. These findings have implications for understanding species coexistence and the reciprocal relationships between productivity and species diversity in this ecosystem.  相似文献   

11.
Niche theory with hypotheses on shape and distribution of ecological response curves is used in the studies of resource sharing of competing plant species. Predictions based on theory should be applicable when, e.g., effects of competing species on the ecological tolerances are assessed or species’ diversity along a resource gradient is evaluated. We studied the ecological response curves of competing plant species along a resource gradient in boreal forests. The study was based on nation-wide soil and vegetation data collected from 455 sample plots on boreal forests in Finland. Species response curves along a soil fertility gradient (in terms of C/N ratio) were estimated using generalized additive models. Distribution of species optima and the relationship of niche width and skewness to the location of the optimum were analyzed with new bootstrap tests. The developed tests can account for the effects of truncation observed in the response curves of several species and for the uneven distribution of observations on the gradient.The estimated response curves of the major field layer species of boreal forests were not evenly distributed along soil C/N gradient. The density of optima peaked with relatively high nitrogen availability. Species with optima at low nitrogen availability had relatively broad realized niches. Niche width was negatively correlated with the density of optima. Species optima were packed and niches were narrow at high resource levels. This result suggests that a greater number of more specialized species can occur and interspecific competition decreases niche widths at high resource levels. Species were packed in the gradient where the C/N ratio was lower than 25, i.e., in conditions where nitrification can take place. This indicates that the majority of the vascular plants of boreal forests are favoured by the availability of NO3. Those few species thriving at high C/N ratios have broader realized niches.  相似文献   

12.
13.
Edwards KF  Stachowicz JJ 《Ecology》2011,92(5):1094-1103
For sessile organisms, dispersal and recruitment are typically spatially stochastic, but there is little understanding of how this variability scales up to influence processes such as competitive coexistence. Here we argue that coexistence of benthic marine animals is enhanced by stochastic differences between species in the spatial distribution of larval settlement. Differentiation of settlement distributions among competitors results in intraspecifically aggregated settlement, which can reduce overall interspecific competition and increase overall intraspecific competition. We test for the components of this mechanism using a pair of subtidal invertebrates, and we find that the mean interspecific effect of the dominant competitor is substantially reduced by natural settlement variability. Using a simulation parameterized with experimental data, we find that variable settlement could play an important role in long-term coexistence between these species. This mechanism may apply broadly to benthic marine communities, which can be highly diverse and typically exhibit large settlement fluctuation over a range of scales.  相似文献   

14.
As the number of biological invasions increases, the potential for invader-invader interactions also rises. The effect of multiple invaders can be superadditive (invasional meltdown), additive, or subadditive (invasional interference); which of these situations occurs has critical implications for prioritization of management efforts. Carduus nutans and C. acanthoides, two congeneric invasive weeds, have a striking, segregated distribution in central Pennsylvania, U.S.A. Possible hypotheses for this pattern include invasion history and chance, direct competition, or negative interactions mediated by other species, such as shared pollinators. To explore the role of resource competition in generating this pattern, we conducted three related experiments using a response-surface design throughout the life cycles of two cohorts. Although these species have similar niche requirements, we found no differential response to competition between conspecifics vs. congeners. The response to combined density was relatively weak for both species. While direct competitive interactions do not explain the segregated distributional patterns of these two species, we predict that invasions of either species singly, or both species together, would have similar impacts. When prioritizing which areas to target to prevent the spread of one of the species, it is better to focus on areas as yet unaffected by its congener; where the congener is already present, invasional interference makes it unlikely that the net effect will change.  相似文献   

15.
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of living resources in, e.g., fisheries.  相似文献   

16.
Summary In a laboratory experiment it was shown that piscivorous predators reversed the outcome of competitive interactions between two fish prey species, juveniles of roach (Rutilus rutilus) and perch (Perca fluviatilis), by behaviorally affecting their use of two available habitats, an open water habitat and a structurally complex refuge. The shift in the competitive relationship was the result of predators forcing the juvenile fishes into a prey refuge with high structural complexity. While roach was competitively superior in the unstructured habitat, perch was superior in the structurally complex prey refuge. The reversal in competitive relationship was demonstrated both with respect to foraging rate and growth rate and resulted from the high structural complexity in the prey refuge interfering with the roach's swimming performance. Because survival and growth patterns through the juvenile stages have profound effects on the population/community dynamics of size-structured populations such as those of fish, behaviorally induced changes in competitive ability should have significant implications also at the population and community levels.  相似文献   

17.
Changes in the species composition of biotic communities may alter patterns of natural selection occurring within them. Native perennial grass species in the Intermountain West are experiencing a shift in the composition of interspecific competitors from primarily perennial species to an exotic, annual grass. Thus traits that confer an advantage to perennial grasses in the presence of novel annual competitors may evolve in invaded communities. Here I show that such traits are apparent in populations of a native perennial grass, big squirreltail (Elymus multisetus M.E. Jones), exposed to cheatgrass (Bromus tectorum L.) competitors. Dormant big squirreltail plants were collected from cheatgrass-invaded and uninvaded sites near Bordertown, California, USA, a mid-elevation (1600 m) sagebrush community, and transplanted into pots in a greenhouse. Individual plants were split into equal halves. One half was grown with competition from cheatgrass, and the other half was grown without competition. Plants collected from invaded sites responded more quickly to watering, growing more leaves in the first 10 days after transplanting. In addition, big squirreltail plants collected from invaded areas experienced a smaller decrease in plant size when grown with competition than did plants collected from uninvaded areas. Accordingly, while there were fewer big squirreltail individuals in the invaded sites, they were more competitive with cheatgrass than were the more abundant conspecifics in nearby uninvaded areas. It is possible that annual grasses were the selective force that caused these population differences, which may contribute to the long-term persistence of the native populations. While it is tempting to restore degraded areas to higher densities of natives (usually done by bringing in outside seed material), such actions may impede long-term adaptation to new conditions by arresting or reversing the direction of ongoing natural selection in the resident population. If hot spots of rapid evolutionary change can be identified within invaded systems, these areas should be managed to promote desirable change and could serve as possible sources of restoration material or reveal traits that should be prioritized during the development of restoration seed material.  相似文献   

18.
Soil microbes drive the classic plant diversity-productivity pattern   总被引:1,自引:0,他引:1  
Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.  相似文献   

19.
In heterogeneous environments, differential niche selection by two competing species will result in niche partitioning so that individuals of each species can maximise their fitness under different sets of environmental variables. Thus, niche partitioning is considered essential to allow co-existence of ecologically related species. To assess whether niche partitioning was occurring between native red squirrels and alien grey squirrels living together in a 13-ha high-quality mixed deciduous woodland in north Italy, we investigated temporal and spatial patterns in their activity and foraging behaviour between 1996 and 1998. We used live trapping and radio-tracking to study numbers, distribution and behaviour of squirrels. Daily and seasonal temporal activity patterns, and activity on the ground and in the trees, were similar in the two species. However, grey squirrels were more tree specialists and had a narrower tree-species niche width than red squirrels, in particular making greater use of oak. Other studies of red and grey squirrels in allopatry show that the two species differ in the extent they utilise oak. Overall, tree-species niche overlap was about 70%. Grey squirrels had larger home ranges than red squirrels. Home ranges and core areas of both species were larger in males than females. Also, intraspecific home range and core-area overlap patterns were similar to those found in allopatric populations of these species. Overall, there was no evidence that the use of space of one species was affected by the other. Our results show that there was no niche partitioning of activity or foraging behaviour in time or space during the study. This suggests that, at moderate grey-squirrel densities, red squirrels are unable to avoid competition with grey squirrels, and that competition for food and/or space will occur when these resources become limiting.  相似文献   

20.
Gurd DB 《Ecology》2008,89(2):495-505
The role of interspecific competition and resource partitioning in determining the composition of species assemblages is often controversial. In many cases data on species co-occurrence or resource use (prey or habitat) have been interpreted without a clear understanding of how, or even whether, phenotypic differences constrain performance to allow resource partitioning or how these constraints and the density of resources and competitors should shape resource selection by each species. Instead, predictions have been based on assumed constraints, possibly leading to conflicting results. One such controversy involves the role of bill morphology in mediating resource partitioning among dabbling ducks (Anas spp.). To determine whether incorrect assumptions may have contributed to this controversy, I constructed mechanistic models that predict filter-feeding performance for seven species of ducks directly from bill morphology and kinetics and compared these predictions to those of earlier studies that tested the bill morphology hypothesis. The models predicted that species should share a preference for their most profitable (primary) prey while partitioning their less profitable (secondary) prey by size. Consequently, ducks should forage in the same habitats and exhibit high overlap in prey size when competitor/resource ratios are either high or low. In contrast, earlier studies expected that resource partitioning should always be evident, which implicitly assumes that species partition their primary resources. The models also predicted that the ecological similarity of species in assemblages should increase as prey abundance and size variability declines, contrary to the expectations of an earlier study. A more consistent understanding of the mechanisms regulating assemblages of dabbling ducks, and other species, might emerge if patterns of resource use and species co-occurrence were predicted directly from a mechanistic understanding of how performance trade-offs affect resource selection in the context of varying resource and competitor densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号