首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preisser EL  Elkinton JS 《Ecology》2008,89(10):2671-2677
Although biological invasions are of considerable concern to ecologists, relatively little attention has been paid to the potential for and consequences of indirect interactions between invasive species. Such interactions are generally thought to enhance invasives' spread and impact (i.e., the "invasional meltdown" hypothesis); however, exotic species might also act indirectly to slow the spread or blunt the impact of other invasives. On the east coast of the United States, the invasive hemlock woolly adelgid (Adelges tsugae, HWA) and elongate hemlock scale (Fiorinia externa, EHS) both feed on eastern hemlock (Tsuga canadensis). Of the two insects, HWA is considered far more damaging and disproportionately responsible for hemlock mortality. We describe research assessing the interaction between HWA and EHS, and the consequences of this interaction for eastern hemlock. We conducted an experiment in which uninfested hemlock branches were experimentally infested with herbivores in a 2 x 2 factorial design (either, both, or neither herbivore species). Over the 2.5-year course of the experiment, each herbivore's density was approximately 30% lower in mixed- vs. single-species treatments. Intriguingly, however, interspecific competition weakened rather than enhanced plant damage: growth was lower in the HWA-only treatment than in the HWA + EHS, EHS-only, or control treatments. Our results suggest that, for HWA-infested hemlocks, the benefit of co-occurring EHS infestations (reduced HWA density) may outweigh the cost (increased resource depletion).  相似文献   

2.
Russell FL  Louda SM  Rand TA  Kachman SD 《Ecology》2007,88(2):413-423
Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001-2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0-220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (<5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle's co-occurrence with the coevolved preferred exotic host plant and not from the weevil's response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants.  相似文献   

3.
Maternal manipulation of offspring sex ratio in response to conspecifics is considered in relation to sex ratio theory using the parasitoid wasp Spalangia endius. Females produced a greater proportion of sons in response to mated but not virgin females. This is the first demonstration of a differential sex ratio response to virgin versus mated females and provides support for local mate competition theory. More recent sex ratio models that predict sex ratio responses to conspecifics, specifically constrained, perturbation, and crowding models, were not supported. An increased proportion of sons in response to another mated female occurred on the second day of oviposition but not on the first, and the day effect resulted from experience not age. When females oviposited alone after 2 days' exposure to another female, they still produced a greater proportion of sons than if they had always been alone, but only if the other female was mated, not if she was virgin. Females do not seem to assess the presence of virgin versus mated females indirectly by using a low density of males or a long latency to mate as an indicator for virgin females: neither affected offspring sex ratio. That mated females adjusted their sex ratios in response to other mated females, but not virgin females or males, may be due proximally to mated females not often encountering the latter. Virgin females and males are not located as deep in the oviposition substrate as mated females.  相似文献   

4.
5.
Wilson EE  Holway DA 《Ecology》2010,91(11):3294-3302
Variation in invasion success may result from the divergent evolutionary histories of introduced species compared to those of native taxa. The vulnerability of native biotas to ecological disruption may be especially great on oceanic islands invaded by continental species with unique ecological traits. In part because Hawaii lacks native eusocial insects, social invaders may threaten endemic taxa that are ecologically similar but solitary. Using a combination of field manipulations, molecular analyses, physiological data, and behavioral assays, we identify the mechanisms underlying the displacement of two genera of native solitary Hymenoptera in Hawaii by a social continental invader, the western yellowjacket (Vespula pensylvanica). Experimental removal of V. pensylvanica colonies resulted in increased densities of native Hymenoptera. Endemic Hylaeus bees directly suffer through predation by yellowjackets, and perhaps as a consequence, avoid floral resources occupied by V. pensylvanica. Native Nesodynerus wasps also avoid V. pensylvanica but are negatively affected by yellowjackets not through predation, but through exploitative competition for caterpillar prey. Displacement of native solitary Hymenoptera may be heightened by the ability of V. pensylvanica to prey upon and scavenge honey bees and to rob their honey stores, resources unavailable to endemic bees and wasps because of their specialized niches. Our study provides a unique example of an ecologically generalized social invader that restructures native assemblages of solitary Hymenoptera by interacting with endemic taxa on multiple trophic levels.  相似文献   

6.
7.
Population-wide mating patterns can select for equal parental investment in both sexes, but limiting resources, such as mates or developmental substrates, can increase competition leading to biased sex ratios in favor of either sex. Such competition for resources typically occurs in spatially structured populations, where dispersal is limited. In this laboratory study, we investigate if and how resource competition affects sex allocation, discriminative behaviors and competitive interactions of the wingless hyperparasitoid Gelis acororum, which exploits patchily distributed hosts. We show that G. acororum sex ratios are male-biased and that this is not a consequence of constrained reproduction by virgin females. Our results suggest that this pattern of reproductive investment, which is only rarely observed in parasitoids, is a consequence of resource limitation, in terms of hosts rather than mates. Further, G. acororum appears not to respond to intrinsic host quality or to prior oviposition in its host. When competing inter-specifically for host resources, G. acororum outcompetes its congener Gelis agilis, but does so mainly when ovipositing on the host first. Overall, our results suggest that host resource limitation could be an important environmental factor shaping sex allocation in G. acororum, with competition taking place both intra- and inter-specifically.  相似文献   

8.
There is increasing concern for the disruptive effects seen in aquatic species exposed to environmental contaminants. However, few studies have investigated the impact of such contaminants on the behavior of individuals living in exposed waters. Contaminant exposure can affect animal populations by disrupting behaviors including feeding, locomotion, and mating. In this study, we examined how living in an ecosystem polluted by combinations of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and heavy metals (arsenic, cadmium, iron, lead, zinc) impacts contest behavior in the round goby (Neogobius melanostomus). Fish collected from heavily contaminated and cleaner sites in Lake Ontario were subjected to a resource contest to determine the effect of these contaminants on aggression and the establishment of dominance hierarchies, which in turn influence access to food, shelter, and mating opportunities. Dominance establishment (a clear resource winner) was less obvious among fish from the contaminated site compared to the more stable hierarchies that formed between pairs of fish from the clean site. Pairs of fish from the contaminated site performed more assessment displays compared to fish from clean sites. These results suggest that the costs of living in an environment under exposure can shape behavioral repertoires. The altered conflict resolution strategies of contaminated fish may reflect impaired cognitive function, sensory perception, and/or higher metabolic load associated with aggression. This study provides support for the utilization of quantifiable behavioral differences as ecologically relevant measures of contaminant exposure.  相似文献   

9.
The intentional introduction of specialist insect herbivores for biological control of exotic weeds provides ideal but understudied systems for evaluating important ecological concepts related to top-down control, plant compensatory responses, indirect effects, and the influence of environmental context on these processes. Centaurea stoebe (spotted knapweed) is a notorious rangeland weed that exhibited regional declines in the early 2000s, attributed to drought by some and to successful biocontrol by others. We initiated an experiment to quantify the effects of the biocontrol agent, Cyphocleonus achates, on Ce. stoebe and its interaction with a dominant native grass competitor, Pseudoroegneria spicata, under contrasting precipitation conditions. Plots containing monocultures of each plant species or equal mixtures of the two received factorial combinations of Cy. achates herbivory (exclusion or addition) and precipitation (May-June drought or "normal," defined by the 50-year average) for three years. Cy. achates herbivory reduced survival of adult Ce. stoebe plants by 9% overall, but this effect was stronger under normal precipitation compared to drought conditions, and stronger in mixed-species plots compared to monocultures. Herbivory had no effect on Ce. stoebe per capita seed production or on recruitment of seedlings or juveniles. In normal-precipitation plots of mixed composition, greater adult mortality due to Cy. achates herbivory resulted in increased recruitment of new adult Ce. stoebe. Due to this compensatory response to adult mortality, final Ce. stoebe densities did not differ between herbivory treatments regardless of context. Experimental drought reduced adult Ce. stoebe survival in mixed-species plots but did not impede recruitment of new adults or reduce final Ce. stoebe densities, perhaps due to the limited duration of the treatment. Ce. stoebe strongly depressed P. spicata reproduction and recruitment, but these impacts were not substantively alleviated by herbivory on Ce. stoebe. Population-level compensation by dominant plants may be an important factor inhibiting top-down effects in herbivore-driven and predator-driven cascades.  相似文献   

10.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

11.
MacDougall AS  Turkington R 《Ecology》2006,87(7):1831-1843
Diversity is a balance between processes that add and limit species (e.g., dispersal vs. competition), but reconciling their contributions remains a challenge. Recruit-ment-based models predict that dispersal barriers are most limiting for diversity, while competition-based models predict that dispersal matters only when competition is minimized. Testing these models is difficult because their influence varies with scale and site productivity. In a degraded oak savanna, we used plot-level (seed additions, burning) and site-level (proportions of regional functional groups found locally) analyses in areas with variable soil depth to examine how dispersal and competition influence diversity. At the plot level, added species persisted where they were formerly absent, but few established naturally despite fire-induced resource enrichment and nearby populations, revealing the importance of dispersal limitation for diversity. This result did not vary with soil depth or standing crop. Although competition could not prevent establishment in unburned plots, it significantly lowered survival, indicating that resource limitations exacerbate dispersal inefficiencies. At the site level, the concordance between regional and local diversity for native species was associated with soil depth heterogeneity, not dispersal or competition. This suggests that persistence is determined primarily by the influence of the environment on population demographics. Given that the formation of new populations is unlikely, those remaining appear to be confined to optimal habitat where they resist competitive or stochastic displacement, possibly explaining why species loss is rare despite substantial habitat loss and invasion. For exotics, there was no relationship between diversity and soil depth heterogeneity. Annuals with presumed dispersal capabilities were significantly overrepresented in all sites while perennial forbs, the largest regional functional group, were significantly underrepresented. We interpret the native-exotic discrepancies as reflecting the recent arrival of exotics (150 years ago), suggesting that local establishment occurs slowly even for species with regional prevalence. The accumulation lag may be explained by the need for founder populations to be demographically stable; otherwise persistence requires continual immigration favoring overrepresentation by dispersers. Our findings support the view that dispersal limitation restricts diversity within plant communities, but suggests that the impacts of environment on demographic performance ultimately determine the pattern and rate of community assembly.  相似文献   

12.
Chun YJ  Collyer ML  Moloney KA  Nason JD 《Ecology》2007,88(6):1499-1512
The differences in phenotypic plasticity between invasive (North American) and native (German) provenances of the invasive plant Lythrum salicaria (purple loosestrife) were examined using a multivariate reaction norm approach testing two important attributes of reaction norms described by multivariate vectors of phenotypic change: the magnitude and direction of mean trait differences between environments. Data were collected for six life history traits from native and invasive plants using a split-plot design with experimentally manipulated water and nutrient levels. We found significant differences between native and invasive plants in multivariate phenotypic plasticity for comparisons between low and high water treatments within low nutrient levels, between low and high nutrient levels within high water treatments, and for comparisons that included both a water and nutrient level change. The significant genotype x environment (G x E) effects support the argument that invasiveness of purple loosestrife is closely associated with the interaction of high levels of soil nutrient and flooding water regime. Our results indicate that native and invasive plants take different strategies for growth and reproduction; native plants flowered earlier and allocated more to flower production, while invasive plants exhibited an extended period of vegetative growth before flowering to increase height and allocation to clonal reproduction, which may contribute to increased fitness and invasiveness in subsequent years.  相似文献   

13.
Cavaleri MA  Sack L 《Ecology》2010,91(9):2705-2715
Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.  相似文献   

14.
The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds.  相似文献   

15.
Invasive plants may have variable effects within a given environment depending on their interactions with the dominant native species, yet little research has examined such species-species interactions within a site. Savanna trees with nonoverlapping canopies offer an ideal opportunity to assess associated changes in the ecosystem processes that result from interactions between an invasive species and different native tree species. We examined the influence of the exotic invasive shrub Lonicera maackii on decomposition dynamics under three native tree species: Fraxinus quadrangulata, Quercus muehlenbergii, and Carya ovata. Litter decomposition rates and litter C and N were evaluated over two years using single- and mixed-species litterbags (L. maackii and individual tree species litter); microarthropod abundance was measured at 6 weeks using Tulgren funnels. Litter from the invasive L. maackii decomposed and lost N more rapidly than the litter of the three native tree species. The rate at which L. maackii decomposed depended on its location, with L. maackii litter decomposing and losing N more rapidly under C. ovata than under the other two native tree species. Mixing L. maackii with the native species' litter did not accelerate litter mass loss overall but did result in synergistic N losses at variable times throughout the experiment, further highlighting the variable interaction between native species and L. maackii. Nitrogen loss was significantly higher than expected in mixtures of C. ovata + L. maackii litter at 6 weeks, in F. quadrangulata + L. maackii litter at 12 weeks, and in Q. muehlenbergii + L. maackii litter at 24 weeks. If the effects of invasive species on certain ecosystem processes, such as litter decomposition, are strongly influenced by their association with native species, this could suggest the need for a more nuanced understanding of the vulnerability of ecosystem processes to invasions of L. maackii and potentially other invasive species.  相似文献   

16.
Williams JL  Crone EE 《Ecology》2006,87(12):3200-3208
Negative impacts of invasive plants on natives have been well documented, but much less is known about whether invasive plants can cause population level declines. We used demographic models to investigate the effects of two invasive grasses on the demography and population growth of Anemone patens, a long-lived native perennial of North American grasslands. Demographic data of A. patens growing in patches characterized by Bromus inermis, Poa pratensis, or native grasses were used to parameterize integral projection models. Models based on both average conditions and those allowing for environmental stochasticity indicate that A. patens is slowly increasing in patches of native grass (lambda = 1.02) and declining in patches of invasive grasses, particularly those dominated by B. inermis (lambda = 0.93). Extinction probabilities indicate that A. patens should persist in native grass patches, but has a much higher probability of extinction in Bromus patches compared to Poa patches. While sensitivity analyses showed that survival had the biggest effect on population growth rates in all habitats, results of a Life Table Response Experiment (LTRE) revealed that slower individual growth rates in patches of invasive grasses contributed the most to the observed reduction in population growth. These results suggest that invasive grasses may cause slow declines in A. patens, despite short-term coexistence, and that controlling B. inermis only would not be sufficient to ensure A. patens persistence.  相似文献   

17.
The recent range expansion of Barred Owls (Strix varia) into the Pacific Northwest, where the species now co-occurs with the endemic Northern Spotted Owl (Strix occidentalis caurina), resulted in a unique opportunity to investigate potential competition between two congeneric, previously allopatric species. The primary criticism of early competition research was the use of current species' distribution patterns to infer past processes; however, the recent expansion of the Barred Owl and the ability to model the processes that result in site occupancy (i.e., colonization and extinction) allowed us to address the competitive process directly rather than inferring past processes through current patterns. The purpose of our study was to determine whether Barred Owls had any negative effects on occupancy dynamics of nesting territories by Northern Spotted Owls and how these effects were influenced by habitat characteristics of Spotted Owl territories. We used single-species, multi-season occupancy models and covariates quantifying Barred Owl detections and habitat characteristics to model extinction and colonization rates of Spotted Owl pairs in southern Oregon, USA. We observed a strong, negative association between Barred Owl detections and colonization rates and a strong positive effect of Barred Owl detections on extinction rates of Spotted Owls. We observed increased extinction rates in response to decreased amounts of old forest at the territory core and higher colonization rates when old-forest habitat was less fragmented. Annual site occupancy for pairs reflected the strong effects of Barred Owls on occupancy dynamics with much lower occupancy rates predicted for territories where Barred Owls were detected. The strong Barred Owl and habitat effects on occupancy dynamics of Spotted Owls provided evidence of interference competition between the species. These effects increase the importance of conserving large amounts of contiguous, old-forest habitat to maintain Northern Spotted Owls in the landscape.  相似文献   

18.
19.
Cesium and mercury are two mono-valent elements which can be found in toxic industrial, medical, and nuclear wastes. Their presence in the environment has deleterious effects on the ecosystem, living organisms including humans. Due to the chemical nature of these metals, bioremediation by conventional methods is more difficult to achieve compared to other metals. In this study, we used three biosorbents (oak powder, gall nut, and bacterial exopolymer) for the bioremediation of Hg and Cs. Bio-polymer was produced in the GMS mineral broth. Synthetic wastes of Hg(NO3)2 and isotope Cs-133 as the single-metal solutions were used. The biorefining process was carried out in glass columns, made of Pyrex, with dimensions 20?×?7/2?cm2 with a V-shaped bottom. The samples were analyzed using atomic absorption. The experimental results showed that eliminated metal percent by oak powder, gall nut, and bacterial exopolymer were, respectively, of 94.8%, 96%, and 13.8% for Hg and 7.8%, 4.4%, and 69.4% for Cs. The tests revealed that Ca++, when used as flocculant, played a key role in both biosorption and bio-precipitation rates. Consequently, it was concluded that the investigated biosorbents could be use as an integrated biosorption system for the refinement of mixed wastes.  相似文献   

20.
Blumenthal DM  Hufbauer RA 《Ecology》2007,88(11):2758-2765
The "evolution of increased competitive ability" (EICA) hypothesis predicts that exotic species will adapt to reduced herbivore pressure by losing costly defenses in favor of competitive ability. Previous studies often support the prediction that plants from exotic populations will be less well defended than plants from native populations. However, results are mixed with respect to the question of whether plants from exotic populations have become more competitive. In a common-garden experiment involving plants from two native and two exotic populations of 14 different invasive species, we tested whether exotic plants generally grow larger than conspecific native plants, and whether patterns of relative growth depend on the intensity of competition. We found a quite consistent pattern of larger exotic than native plants, but only in the absence of competition. These results suggest that invasive species may often evolve increased growth, and that increased growth may facilitate adaptation to noncompetitive environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号