首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Firefighters are exposed to known health-damaging air pollutants present in bushfire smoke and poorly managed exposure can result in serious health issues. A better understanding of exposure levels and the major factors influencing exposures is crucial for the development of mitigation strategies to minimise exposure risks and adverse health impacts. This study monitored air toxics within the breathing zone of firefighters at prescribed burns and at wildfires in Australia. The results showed that exposure levels were highly variable, with higher exposures (sometimes exceeding occupational exposure standards) associated with particular work tasks (such as patrol and suppression) and with certain burn conditions. The majority of firefighter's exposures were at low and moderate levels (~60%), however considerable attention should be given to the high (~30%) and very high (6%) exposure risk situations for which acute and chronic health risks are very likely and for which control strategies should be developed and implemented to minimise health risks.  相似文献   

2.
Residents of Xuan Wei County in China have unusually high lung cancer mortality that cannot be attributed to tobacco use or occupational exposure. They are exposed to smoke from unvented, open pit coal or wood fires (often used for cooking and heating). The variation in lung cancer rates among communes within the county suggests that indoor combustion of smoky coal may be the prime determinant of lung cancer. To characterize the air in Xuan Wei homes, samples of air particles and semivolatile organic compounds were collected from homes located in two communes; one commune has a high rate of lung cancer, and the other has a low rate. Samples collected in the commune where the lung cancer rate is high and where smoky coal is the predominant fuel contained high concentrations of small particles with high organic content; organic extracts of these samples were mutagenic. Samples from homes in the wood-burning commune, which has a low rate of lung cancer, consisted mostly of larger particles of lower organic content and mutagenicity. The smoky coal sample was a mouse skin carcinogen and was a more potent initiator of skin tumors in comparison to the wood or smokeless coal sample.  相似文献   

3.
One hundred and ninety-four randomly selected nonsmoking subjects collected air samples in their breathing zone by wearing personal monitors for 24 h. The study was centered in Hong Kong, and comprised housewives in one group, primarily for assessing exposures in the home, and office workers in a second group to assess the contribution of the workplace to overall exposure. Samples collected were analysed for respirable suspended particles (RSP), nicotine, 3-ethenylpyridine, and environmental tobacco smoke (ETS) particles using ultraviolet absorbance (UVPM), fluorescence (FPM), and solanesol measurements (SolPM). Saliva cotinine analyses were also undertaken to confirm the nonsmoking status of the subjects and to investigate their correlation with ETS exposure measurements. Approximately 6% of the subjects in Hong Kong misclassified their nonsmoking status. Median time-weighted average (TWA) RSP concentrations varied from 43 to 54 μg m−3 with no significant differences detected between any of the groups investigated. Office workers who lived and worked with smokers were exposed to 2.6 μg m−3 ETS particles (SolPM) and 0.44 μg m−3 nicotine, based on median TWA concentrations. Median concentrations of ETS particles and nicotine were below the limits of quantification for housewives living with smokers and were not significantly different from those for housewives living with nonsmokers. It would therefore be unreliable in Hong Kong to use a smoking spouse as a marker for assessing health risks related to ETS exposure. The office workers in this study were significantly more exposed to ETS than housewives from either smoking or nonsmoking homes, and the workplace was estimated to contribute over 33% of the annual exposure to ETS particles and nicotine. Exposure estimates suggest that the most highly exposed office workers in this study receive between 11 and 50 cigarette equivalents per year, based upon upper decile levels for ETS particles and nicotine, respectively.  相似文献   

4.
In industrial hygiene and health physics the goal has been to protect the health of the individual. Therefore monitoring the exposure people actually receive has been the principal concern. In regulating public exposures to air pollution, the focus has been much different. Recently, use of personal monitors and alternative means of estimating actual exposures has expanded rapidly. The role of personal monitors in epidemiology, exposure studies, and in supplementing the existing fixed station monitoring network for establishing trends and for regulatory purposes is discussed. The implications for air quality standards in recent findings of personal and indoor exposures is considered. New developments that are needed, and those that are not needed, are outlined.  相似文献   

5.
Forest fires represent a serious threat to public security in Europe due to the large burned area. Moreover, smoke pollution due to forest fire events is an important public health issue for the communities directly affected, and particularly for the personnel involved in firefighting operations. Aiming to contribute to the scientific knowledge concerning firefighters exposure to forest fires smoke, data of individual exposure to carbon monoxide, nitrogen dioxide, volatile organic compounds, and particulate matter were obtained during experimental field fires for a group of 10 firefighters equipped with portable “in continuum” measuring devices. Measured values are very high exceeding the Occupational Exposure Standard limits, in particular for peak limit thresholds. These are the first measurements and analysis of firefighter's individual exposure to toxic gases and particles in fire smoke experiments in Europe. However, they already indicate that urgent measures to avoid these levels of exposure are needed.  相似文献   

6.
This paper demonstrates association of short-term variation in pollution and health outcomes within the same geographical area for a typical urban setting in the northern part of the UK from time series analysis. It utilises publicly available datasets for regulated air pollutants (PM??, NO?, SO?, CO and O?), meteorology and respiratory hospital admissions (and mortality) between April 2002 and December 2005 to estimate the respiratory health effect of pollution exposure, mainly in the elderly. Our results show that PM?? and O? are positively associated with respiratory hospital admissions in the elderly, specifically in the age group 70-79. CO effects seem to be concentrated on the most elderly age group (80+) whereas NO? seems to have the opposite age-related effect, with lower effects on the more elderly.  相似文献   

7.
BackgroundAirborne particles are a complex mix of organic and inorganic compounds, with a range of physical and chemical properties. Estimation of how simultaneous exposure to air particles affects the risk of adverse health response represents a challenge for scientific research and air quality management. In this paper, we present a Bayesian approach that can tackle this problem within the framework of time series analysis.MethodsWe used Dirichlet process mixture models to cluster time points with similar multipollutant and response profiles, while adjusting for seasonal cycles, trends and temporal components. Inference was carried out via Markov Chain Monte Carlo methods. We illustrated our approach using daily data of a range of particle metrics and respiratory mortality for London (UK) 2002–2005. To better quantify the average health impact of these particles, we measured the same set of metrics in 2012, and we computed and compared the posterior predictive distributions of mortality under the exposure scenario in 2012 vs 2005.ResultsThe model resulted in a partition of the days into three clusters. We found a relative risk of 1.02 (95% credible intervals (CI): 1.00, 1.04) for respiratory mortality associated with days characterised by high posterior estimates of non-primary particles, especially nitrate and sulphate. We found a consistent reduction in the airborne particles in 2012 vs 2005 and the analysis of the posterior predictive distributions of respiratory mortality suggested an average annual decrease of − 3.5% (95% CI: − 0.12%, − 5.74%).ConclusionsWe proposed an effective approach that enabled the better understanding of hidden structures in multipollutant health effects within time series analysis. It allowed the identification of exposure metrics associated with respiratory mortality and provided a tool to assess the changes in health effects from various policies to control the ambient particle matter mixtures.  相似文献   

8.
Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = −0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.  相似文献   

9.
Knowing the spatial and temporal trends in environmental exposure to radiofrequency electromagnetic fields is important in studies investigating whether there are associated health effects on humans and ecological effects on plants and animals. The main objective of this study is to assess whether the RFeye car-mounted mobile measurement system used for radio frequency spectrum monitoring in The Netherlands and the United Kingdom could be of value in assessing exposure over large areas as an alternative to measuring exposure with personal exposure meters or using complex modelling techniques. We evaluated the responses of various body-worn personal exposure meters in comparison with the mobile measurement system for spectrum monitoring. The comparison was restricted to downlink mobile communication in the GSM900 and GSM1800 frequency bands. Repeated measurements were performed in three areas in Cambridge, United Kingdom and in three areas in Amersfoort, The Netherlands. We found that exposure assessments through the car-mounted measurements are at least of similar quality to exposure modelling and better than the body worn exposimeter data due to the absence of the shielding effect. The main conclusion is that the mobile measurements provide an efficient and low cost alternative particularly in mapping large areas.  相似文献   

10.
Since the air pollution as measured by stationary monitoring stations is a poor indicator of the population exposure, personal monitors are indispensible to health effects studies. This article reviews the current research on the development of personal monitors. Although most of the analytical methods reviewed in this study appear to be sensitive to the levels of the target pollutants NO2, SO2, and O3 generally encountered in indoor and outdoor air, they lack the desired performance characteristics for a personal monitoring device, such as user safety and ease of operation, weight, and maintenance. Electrochemical transducers/sensors, which have not yet been exploited, are attractive candidates for the application to personal monitoring. This technique has an added feature of generating real-time measurements. A few research models and commercially attractive devices that can be used in field studies are included.  相似文献   

11.
This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.  相似文献   

12.
Satellite-based remote sensing provides a unique opportunity to monitor air quality from space at global, continental, national and regional scales. Most current research focused on developing empirical models using ground measurements of the ambient particulate. However, the application of satellite-based exposure assessment in environmental health is still limited, especially for acute effects, because the development of satellite PM2.5 model depends on the availability of ground measurements. We tested the hypothesis that MODIS AOD (aerosol optical depth) exposure estimates, obtained from NASA satellites, are directly associated with daily health outcomes. Three independent healthcare databases were used: unscheduled outpatient visits, hospital admissions, and mortality collected in Beijing metropolitan area, China during 2006. We use generalized linear models to compare the short-term effects of air pollution assessed by ground monitoring (PM10) with adjustment of absolute humidity (AH) and AH-calibrated AOD. Across all databases we found that both AH-calibrated AOD and PM10 (adjusted by AH) were consistently associated with elevated daily events on the current day and/or lag days for cardiovascular diseases, ischemic heart diseases, and COPD. The relative risks estimated by AH-calibrated AOD and PM10 (adjusted by AH) were similar. Additionally, compared to ground PM10, we found that AH-calibrated AOD had narrower confidence intervals for all models and was more robust in estimating the current day and lag day effects. Our preliminary findings suggested that, with proper adjustment of meteorological factors, satellite AOD can be used directly to estimate the acute health impacts of ambient particles without prior calibrating to the sparse ground monitoring networks.  相似文献   

13.
Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10 μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution.  相似文献   

14.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.  相似文献   

15.
There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health.We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination.Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived.A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted.  相似文献   

16.
17.
The study was designed to determine seasonal differences in personal exposures to respirable suspended particles (RSP) and environmental tobacco smoke (ETS) for nonsmokers in Bremen, Germany. The subjects were office workers, either living and working in smoking locations or living and working in nonsmoking locations. One hundred and twenty four randomly selected nonsmoking subjects collected air samples close to their breathing zone by wearing personal monitors for 24 h or, in some cases, for 7-day periods during the winter of 1999. The investigation was repeated in the summer with 126 subjects, comprised of as many of the studied winter population (89 subjects) as possible. Saliva cotinine analyses were undertaken to verify the nonsmoking status of the subjects. Subjects wore one personal monitor while at work and one while away from the workplace on weekdays, and a third monitor at the weekend. Collected air samples were analysed for RSP, nicotine, 3-ethenylpyridine (3-EP) and ETS particles. The latter were estimated using ultraviolet absorbance (UVPM), fluorescence (FPM) and solanesol (SolPM) measurements. ETS exposure was consistently higher in the winter than in the summer, this pattern being particularly evident for subjects both living and working with smokers. The highest median 24-h time weighted average (TWA) concentrations of ETS particles (SolPM, 25 microg m(-3)) and nicotine (1.3 microg m(-3)) were recorded for subjects performing weekday monitoring during the winter. These were significantly higher than equivalent levels of ETS particles (SolPM, 2.4 microg m(-3)) and nicotine (0.26 microg m(-3)) determined during the summer. There were no appreciable differences between winter and summer percent workplace contributions to median TWA ETS particle and nicotine weekday concentrations, the workplace in Bremen, in general, contributing between 35% and 61% of reported median concentrations. Workers, on average, spent one-third of their time at work during a weekday, indicating that concentrations were either comparable or higher in the workplace than in the home and other locations outside the workplace. Median 24-h weekend ETS particle and nicotine concentrations for smoking locations were not significantly different from equivalent weekday levels during the winter, but were significantly lower during the summer. Based upon median 24-h TWA SolPM and nicotine concentrations for the winter, extrapolated to 1 year's ETS exposure, those subjects both living and working in smoking locations (the most highly exposed group) would potentially inhale 13 cigarette equivalents/year (CEs/y). However, based on a similar extrapolation of summer measurements, the same group of subjects would potentially inhale between 1.3 and 1.9 CEs/y. The most highly exposed subjects in this study, based upon 90th percentile concentrations for those both living and working in smoking locations during the winter, would potentially inhale up to 67 CEs/y in the winter and up to 22 CEs/y in the summer. This clearly demonstrates that seasonal effects should be taken into account in the design and interpretation of ETS exposure studies. Air sampling over a 7-day period was shown to be technically feasible, and subsequent RSP, ETS particle and nicotine levels determined by 7-day monitoring were not found to be significantly different from equivalent levels determined by 24-h monitoring. However, the longer sampling period resulted in the collection of an increased quantity of analytes, which improved the limits of quantitation (LOQ) and allowed a more accurate determination of low level ETS exposure. This was reflected by a reduced percentage of data falling below the LOQ for 7-day monitoring compared with 24-h monitoring. The use of a liquid chromatographic method with tandem mass spectrometric detection for saliva cotinine measurement afforded a greatly improved LOQ and greater accuracy at low concentrations compared with the radioimmunoassay (RIA) method used in previous studies by these authors. In this study, 17 subjects out of 180 tested (9.4%) were found to have saliva cotinine levels exceeding the selected threshold of 25 ng ml(-1) used to discriminate between smokers and nonsmokers.  相似文献   

18.
This work presents a quantitative assessment of nonsmokers' risk of lung cancer from passive smoking. The estimates given should be viewed as preliminary and subject to change as improved research becomes available. It is estimated that U.S. nonsmokers are exposed to from 0 to 14 mg of tobacco tar per day, and that the typical nonsmoker is exposed to 1.4 mg per day. A phenomenological exposure-response relationship is derived, yielding 5 lung cancer deaths per year per 100,000 persons exposed, per mg daily tar exposure. This relationship yields lung cancer mortality rates and mortality ratios for a U.S. cohort which are consistent to within 5% with the results of both of the large prospective epidemiological studies of passive smoking and lung cancer in the United States and Japan. Aggregate exposure to ambient tobacco smoke is estimated to produce about 5000 lung cancer deaths per year in U.S. nonsmokers aged ≥ 35 yr, with an average loss of life expectancy of 17 ± 9 yr per fatality. The estimated risk to the most-exposed passive smokers appears to be comparable to that from pipe and cigar smoking. Mortality from passive smoking is estimated to be about two orders of magnitude higher than that estimated for carcinogens currently regulated as hazardous air pollutants under the federal Clean Air Act.  相似文献   

19.
In recent years, scientist have come to realize that contaminated air inside buildings is a major route of human exposure to certain air pollutants. While scientific interest in the problem continues to grow, efforts to measure indoor pollution concentrations, define exposure levels, and estimate health risks remain in their infancy. Within this arena, policymakers must deal with the question of how best to protect public health and safety in the face of incomplete and often contradictory information. In the past, official response to environmental pollution has traditionally taken the form of “control by regulation.” However, creation of a regulatory framework for indoor air quality poses special policy issues that suggest the need to explore alternative modes of intervention. Ambient outdoor air is a public good, in the sense that enjoyment by one individual in no way detracts from use or enjoyment by others. Indoor air, on the other hand, is not a public good, especially in private residences. Costs and benefits of maintaining adequate indoor air quality are internalized within households, suggesting the possibility of a private demand for clean indoor air. Promulgation of indoor air quality standards and other regulations must confront the fact that individuals are already making decisions about their own air quality. Regulations might or might not improve these decisions. Development of effective and reasonable policy requires an appreciation of the scope for private action and consideration of the likelihood that public intervention will foster improved private choices. Among the logical and relatively inexpensive modes of intervention are public information programs, development of simple warning devices, and product testing and labeling.  相似文献   

20.
It is widely accepted that tobacco smoke is responsible for the vast majority of lung cancers worldwide. There are many known and suspected carcinogens present in cigarette smoke, including α-emitting radioisotopes. Epidemiologic studies have shown that increased lung cancer risk is associated with exposure to ionizing radiation, and it is estimated that the majority of smoking-induced lung cancers may be at least partly attributable to the inhaled and deposited radiation dose from radioisotopes in the cigarette smoke itself. Recent research shows that silencing of the tumor suppressor gene p16INK4a (p16) by promoter methylation plays a role in smoking-related lung cancer. Inactivation of p16 has also been associated with lung cancer incidence in radiation-exposed workers, suggesting that radionuclides in cigarette smoke may be acting with other compounds to cause smoking-induced lung cancer. We evaluated the mechanism of ionizing radiation as an accepted cause of lung cancer in terms of its dose from tobacco smoke and silencing of p16. Because both radiation and cigarette smoking are associated with inactivation of p16, and p16 inactivation has been shown to play a major role in carcinogenesis, ionizing radiation from cigarette smoke likely plays a role in lung cancer risk. How large a role it plays, relative to chemical carcinogens and other modes of action, remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号