首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Arsenic accumulation in vegetables for direct human consumption represents a concern for food safety purposes. This potential problem can be of economic importance particularly in much appreciated, high-quality horticultural products. In this work, a greenhouse set of experiments were conducted to evaluate possible phytotoxic effects and arsenic accumulation in the production of curly endives with arsenic contaminated water.

Two concentration levels (0.5 mg/L and 1.0 mg/L) and two arsenic species (As+3 and As+5) were considered. Dry mass production tended to be reduced as As+3 concentration increased in irrigation water. However, As+5 treatments did not show significant dry mass production differences with a blank (control experiment). As accumulation in plant increased with As concentration in irrigation waters, following a linear trend. Nevertheless, the increase of accumulated As was not statistically significant for As+5 at 0.5 mg/L. Calculated biological absorption coefficients resulted in higher than previous values reported in the literature, which was attributed here to the source of arsenic (irrigation water). Considering field values for As+5/As+3 ratio and averaged concentrations in water, the obtained results support that there is not a short-or medium-term risk to food safety in the curly endive crop in the region of Castilla y León (Spain).  相似文献   

2.
Accumulation, transformation and toxicity of arsenic compounds to Japanese Medaka, Oryzias latipes were investigated. For sodium arsenite [As(II)] and disodium arsenate [As(V)], the mean value for 7-day lethal concentration LC50 for O. latipes were 14.6 and 30.3 mg As/l, respectively. Direct accumulation of arsenic in O. latipes increased as a function of As(III) concentration in water. A small proportion of accumulated arsenic was transformed to methylated arsenic. As much as 70% of the total arsenic accumulated in tissue was depurated. Accumulation and transformation of As(III) by O. latipes in a simple freshwater food chain were also investigated. The transformation of As(III) to As(V) by organisms was more prevalent than biomethylation of accumulated arsenic in organisms of the three steps of the food chain.  相似文献   

3.
This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L(-1) where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg(-1). The arsenic content in different parts of plants are found in the order of roots>shoots>leaves>edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg(-1))>onion bulb (0.45 mg As kg(-1))>cauliflower (0.33 mg As kg(-1))>rice (0.18 mg As kg(-1))>brinjal (0.09 mg As kg(-1))>potato (<0.01 mg As kg(-1)).  相似文献   

4.
The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A45d, A90d and A180d) and three P feeding regimens (P200+0, P134+66 and P66+134) growing for 45 d in 0.2-strength Hoagland-Arnon solution containing 145 microg L(-1) As. While all plants received 200 microM P, P was added in two phases: during acclimation and after arsenic exposure. High initial P-supply (P200+0) favored frond biomass production and plant P uptake, while split-P application (P134+66 and P66+134) favored plant root production. Single P addition favored arsenic accumulation in the roots while split-P addition increased frond arsenic accumulation. Young ferns (A45d) in treatment P134+66 were the most efficient in arsenic removal, reducing arsenic concentration to below 10 microg L(-1) in 35 d. The results indicated that the use of young ferns, coupled with feeding of low initial P or split-P application, increased the efficiency of arsenic removal by P. vittata.  相似文献   

5.
混凝沉淀法处理含砷选矿废水   总被引:1,自引:0,他引:1  
某钨矿含砷选矿废水砷含量高且砷以As(V)为主要存在形态,采用混凝沉淀法处理,详细考察了生石灰、硫酸亚铁和六水三氯化铁3种混凝剂对废水中砷的去除效果。实验结果表明,在PAM投加量40 mg/L,静沉时间60 min条件下,比较分析3种混凝剂对砷的去除效果,三氯化铁为最佳除砷混凝剂。三氯化铁最佳除砷工艺条件为:pH 7.5,三氯化铁投加量986.67 mg/L,混凝反应时间25 min,PAM投加量为40 mg/L,静沉60 min,含砷选矿废水经该工艺处理后,砷去除率可达99.14%,出水砷浓度降至0.361 mg/L,达到国家污水综合排放标准(GB8978-1996)。  相似文献   

6.
氧化-混凝法处理碱性高砷废水的实验研究   总被引:2,自引:0,他引:2  
对碱性高砷废水的处理进行了研究 ,针对常规混凝法除砷的缺点提出了氧化 混凝工艺。结果表明 ,用氧化 混凝工艺除砷效果显著 ,废水经处理后砷含量低于 0 5mg/L ,符合国家排放标准。氧化 混凝除砷的最佳工艺条件为 :pH值为 6— 7,H2 O2 用量为 2 5 % ,氧化时间为 10min ,Fe2 (SO4) 3 用量为 2 5g/L ,PAM用量为 11 2 5mg/L。  相似文献   

7.
A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption.  相似文献   

8.
Environmental Science and Pollution Research - In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2&nbsp;mg L?1) and investigate...  相似文献   

9.
Arsenic speciation in plants growing in arsenic-contaminated sites   总被引:2,自引:0,他引:2  
Concentrations of total arsenic and of arsenic species were determined by ICPMS and HPLC-ICPMS in terrestrial plant samples. The arsenic concentration in plant samples from the contaminated sites ranged from 1.14 to 98.5 mg kg(-1) (dry mass). However, a very high value, exceeding largely this range was found in a moss sample growing in the contaminated area (1750 mg kg(-1)). Plants growing in a non-contaminated area with similar geological characteristics contained 0.06-0.58 mg As kg(-1). Plant samples from different species were selected and extracted with water, water/methanol (9+1, v/v), and water/methanol (1+1, v/v). Water/methanol (9+1, v/v) was selected as extractant for the speciation analysis for all the plant samples. The extraction efficiencies ranged from 3.0% to 41.4%, with good agreement between samples from the same plant species. Arsenite and/or arsenate were found in all the plant samples. Additionally, methylarsonate (MA), dimethylarsinate (DMA), trimethylarsine oxide (TMAO) and tetramethylarsonium ion (TETRA) were also identified in several plants, and in some cases MA and DMA were the main species found. TMAO, which is usually found as a trace constituent in organisms, was also a significant arsenical in one of the studied samples, where it constituted 24% of the extracted arsenic. In the present study, the patterns of arsenic species varied with the plant species and much higher proportion of organoarsenicals was found in plants from the more contaminated sites.  相似文献   

10.
含莠去津和乙草胺河水灌溉对苗期水稻危害的研究   总被引:3,自引:0,他引:3  
本文以1988、1992和1993年洋河流域张家口市部分水稻田污染受害事故为背景,通过事故现场调查资料分析、洋河水质监测、宣化区污染源调查、水稻的药害暴露实验和模型计算,研究了含有除草剂莠去津和乙草胺的河水灌溉对苗期水稻的危害。结果显示,河水中莠去津和乙草胺对水稻苗期的安全灌溉浓度分别为0.01mg/L和0.05mg/L;河水中莠去津对水稻的致死浓度是0.1mg/L;pH、NH3-N和表面活性剂对这种危害作用具有一定的协同效应;为了满足河水对水稻的灌溉水质要求,污染源允许排放的莠去津和乙草胺分别为1.0kg/d和2.0kg/d。  相似文献   

11.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

12.
The dynamics of arsenic in four paddy fields in the Bengal delta   总被引:4,自引:0,他引:4  
Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions.  相似文献   

13.
An ZZ  Huang ZC  Lei M  Liao XY  Zheng YM  Chen TB 《Chemosphere》2006,62(5):796-802
A field investigation and pot experiments were conducted to determine the potential of arsenic (As) hyperaccumulator, Pteris vittata L., to remediate sites co-contaminated with zinc (Zn) and As. We found that P. vittata L. had a very high tolerance to Zn and grew normally at sites with high Zn concentrations. In addition, P. vittata L. could effectively take up Zn into its fronds, with a maximum of 737 mg kg(-1) under field conditions. In pot experiments, the accumulated Zn concentration increased significantly as the Zn treatment was raised from 0 to 2000 mg kg(-1), with a maximum Zn accumulation of 0.22 mg pot(-1). Although the concentration of As in P. vittata L. was reduced by the addition of Zn, total frond accumulation of As was elevated when the Zn treatment was increased from 0 to 1000 mg kg(-1), with a maximum As accumulation of 8.3 mg pot(-1) in the presence of 1000 mg kg(-1) Zn. The high Zn tolerance, relatively high ability to accumulate Zn, and great capacity to accumulate As under conditions of suppression by high Zn suggest that P. vittata L. could be useful for the remediation of sites co-contaminated with Zn and As.  相似文献   

14.
Bioaccumulation and biotransformation of arsenic (As) compounds in freshwater Tilapia mossambica was investigated. The direct accumulation of As by T mossambica was proportional to the concentration of arsenicals in water. Small amounts of accumulated As were transformed to methylated As, including trimethylarsenic (TMA) species. Accumulation and transformation of As(III) by T. mossambica via freshwater food chain results in the transformation of As(III) to As(V) with little biomethylation of accumulated As. Approximately 90% of accumulated As was depurated to water.  相似文献   

15.
The main objective of this study was to evaluate whether arsenic accumulated in the edible pods and seeds of Phaseolus vulgaris, cv. Helda, above the Spanish maximum recommended concentration for food crops, 1 mg kg(-1) on a fresh weight basis. Only organic arsenicals were used because they are: a) the only arsenic species allowed for agricultural applications and b) more mobile than inorganic species. Selection of French beans, a sensitive plant to arsenic, was based on the fact that arsenic upward translocation is higher in sensitive than in tolerant plants. A 2 x 3 factorial experiment was conducted with two organic arsenic species: methylarsonic acid (MAA) or dimethylarsinic acid (DMAA) and three arsenic concentrations: 0.2, 0.5, or 1.0 mg L(-1). Arsenic phytotoxicity was primarily determined by soluble arsenic concentration. Experimental results showed that the low bean plant tolerance to arsenic is possibly due to the high arsenic upward transport to shoots, which could result in profound negative metabolic consequences. Even under extremely adverse conditions, arsenic residues in edible beans were below the maximum statutory limit set by the Spanish legislation. It can be concluded that the major danger of organic arsenical herbicides is that of decreased productivity rather than high arsenic uptake by consumers.  相似文献   

16.
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)–CaCl2 (300 mg/L) coprecipitation agent could remove more than 93 % arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH–NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.  相似文献   

17.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 µg/L to 191 µg/L with a mean concentration of 33 µg/L. Groundwater is mainly Ca–HCO3 type with high concentrations of dissolved As, Fe, and Mn, but low level of SO4. The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 µg/L. Deeper aquifer (> 100 m depth) has a mean arsenic concentration of 18 µg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

18.

Background

This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5???M.

Methods

Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5???M As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants.

Results

The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux.

Conclusions

The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.  相似文献   

19.
Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO42− concentrations and δ34S values indicates that bacterial reduction of SO42− occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L−1), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels.  相似文献   

20.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号