首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fang GC  Wu YS  Chen JC  Fu PP  Chang CN  Ho TT  Chen MH 《Chemosphere》2005,60(3):427-433
The concentrations of ambient air polycyclic aromatic hydrocarbons were measured in a farm area (Tunghai University Pastureland) between August 2001 and April 2002 in central Taiwan, Taichung. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample was extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24 h, and then the extracts were subjected to gas chromatography-mass spectrometric analysis. The PM2.5 (fine particulate) and PM2.5-10 (coarse particulate) total PAHs concentrations at the Tunghai University Pastureland sampling site were found to be 180.62 ngm(-3) and 164.98 ngm(-3), respectively. In general, the concentrations of polycyclic aromatic hydrocarbons were higher in spring and winter than those of summer and autumn for either PM2.5 or PM2.5-10 in Pastureland in central Taiwan. Moreover, coarse particulates are the dominant species during the dust storm season (March and April) in central Taiwan.  相似文献   

2.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   

3.
Two sampling sites in central Taiwan, at Hungkuang University (HKU) and Tunghai University (THU), were chosen to contrast the content of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere from November 2000 to April 2001. PAHs that arise from incomplete combustion of organic materials, especially fossil fuels, are the major toxic pollutants in central Taiwan. This study aimed to analyse PAHs, by using a PS-1 sampler and a gas chromatograph/mass selective detector (GC/MSD), and to identify the major sources of PAHs. At the HKU sampling site, the primary emission sources are probably vehicles and coal burning, and vehicular emissions are the primary contributor at the THU sampling site.  相似文献   

4.
The total suspended particle (TSP) concentration, dry deposition and wind speed were measured with a PS-1 sampler, a dry deposition plate and a Weather Monitor II (#7440), respectively, at the Experimental Farm of Thunghai University in Taiwan. Taiching Industrial Park, Taichung Cong Road (traffic) and a hospital incinerator are close to the sampling site. The sampling time was from August 2001 to December 2001. The average dry deposition flux, the TSP concentration, dry deposition velocities, average wind speed and maximum wind speed were recorded as 617.7 ± 281.4 mg/day/m2, 117.5 ± 17.6 μg/m3, 5.9 ± 2.2 cm/s, 2.7 ± 1.3 m/s and 7.6 ± 2.3 m/s, respectively, at this sampling site. Good correlation coefficients (R) of the TSP concentration and the dry deposition flux with wind speed were found, with values of 0.46 and 0.50, respectively. The concentrations and dry deposition of the total metallic elements were also obtained. The results indicated that the concentrations of anthropogenic elements (Pb, Mn, Cd, Ni, Cr and Zn) were mostly higher than those obtained in other studies around the world. The average dry deposition fluxes and TSP concentrations for Zn and Pb were 0.45 and 0.42, respectively. The same phenomenon was also observed for Fe and Mg (R = 0.59 and 0.65). The results indicate that these elements were all coming from the same emission sources at the farm sampling site.  相似文献   

5.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   

6.
Fang GC  Chang KF  Lu C  Bai H 《Chemosphere》2004,55(6):787-796
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.  相似文献   

7.
The sizes and concentrations of 21 atmospheric polycyclic aromatic hydrocarbons (PAHs) were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan in October and December 2005. Air samples were collected using semi-volatile sampling trains (PS-1 sampler) over 16 days for rice-straw burning and nonburning periods. These samples were then analyzed using a gas chromatograph with a flame-ionization detector (GC/FID). Particle-size distributions in the particulate phase show a bimode, peaking at 0.32-0.56 microm and 3.2-5.6 microm at the two sites during the nonburning period. During the burning period, peaks also appeared at 0.32-0.56 microm and 3.2-5.6 microm at Jhu-Shan, with the accumulation mode (particle size between 0.1 and 3.2 microm) accounting for approximately 74.1% of total particle mass. The peaks at 0.18-0.32 microm and 1.8-3.2 microm at Shin-Gang had an accumulation mode accounting for approximately 70.1% of total particle mass. The mass median diameter (MMD) of 3.99-4.35 microm in the particulate phase suggested that rice-straw burning generated increased numbers of coarse particles. The concentrations of total PAHs (sum of 21 gases + particles) at the Jhu-Shan site (Sin-Gang site) were 522.9 +/- 111.4 ng/ml (572.0 +/- 91.0 ng/ml) and 330.1 +/- 17.0 ng/ml (or 427.5 +/- 108.0 ng/ml) during burning and nonburning periods, respectively, accounting for a roughly 58% (or 34%) increase in the concentrations of total PAHs due to rice-straw burning. On average, low-weight PAHs (about 87.0%) represent the largest proportion of total PAHs, followed by medium-weight PAHs (7.1%), and high-weight PAHs (5.9%). Combustion-related PAHs during burning periods were 1.54-2.57 times higher than those during nonburning periods. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at the two sites are similar and include vehicle exhaust, coal/wood combustion, incense burning, and incineration emissions. Open burning of rice straw was estimated to contribute approximately 5.0-33.5% to the total atmospheric PAHs at the two sites.  相似文献   

8.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

9.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

10.
Ambient suspended particulate (PM2.5, PM2.5–10, TSP) was collected from June 1998 to February 2001 in Taichung, central Taiwan. In addition, the related water-soluble ionic species (Cl, NO3, SO42−, Na+, NH4+, K+, Mg2+, Ca2+) and metallic species (Fe, Zn, Pb, Ni) were also analyzed in this study. The results showed that the concentrations of particulate mass are higher in the traffic site (CCRT) than the other sampling sites in this study. Also, the fine particle (PM2.5) concentration is the dominant species of the total suspended particles in Taichung, central Taiwan. The dominant species for PM2.5 are sulfate and ammonium at all sampling sites during the period of 1998–2001. The results of diurnal variation at THUC sampling site are also discussed in this study. Overall, acidic and secondary aerosol (Cl, NO3, SO42− and NH4+) is a more serious air pollutant issue in southern and central Taiwan than at several sites around the world. Therefore, ambient suspended particulate monitoring in Taichung, central Taiwan will be continuing in our following study to provide more information for the government to formulate environmental strategy.  相似文献   

11.
The aim of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) associated with aerosols (PM10) collected at three different sampling stations: 8° Distrito, CEASA and Charqueadas. The samples were collected between November 2001 and November 2002, and the concentrations of 16 major PAHs were determined according to EPA. The filters containing particulate matter were extracted with dichloromethane in Soxhlet and the extracts were later analysed in a gaseous chromatograph coupled to a mass spectrometer (GS/MS). The average concentrations of PAHs ranged between 0.04 and 2.30 ng m−3. The analysis of principal components was applied to the chemical and meteorological variables in order to facilitate the identification of sources of PAHs emission into the atmospheric particulate. The study identified the following sources of PAHs: vehicular emissions, such as diesel oil, petrol, alcohol, and kerosene; industrial emissions, like lubricating oils; emissions from hospital waste burning, and coal burning at power plants.  相似文献   

12.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at six sampling sites in the heating (February to March 2001) and nonheating (August to September 2001) periods in an industrial city in Northern China. Thirteen PAHs were measured. The total average concentrations (nanograms per meter cubed) of PAHs ranged between 78.93 and 214.63 during the heating period and from 31.48 to 102.26 in the nonheating period. Benzo(a)pyrene occurred at the highest level at a site near an industrial area but occurred at low concentrations far from the city center and industrial areas. In addition, ambient PAH profiles were studied. The five and six-ring species occurred in high fractions at the sampling site. By diagnostic ratio analysis, the major source at each sampling site in the city was coal combustion in the heating period; in the nonheating period, the major sources were relatively complex. Finally, the similarities among the six regions were assessed by principal component analysis, cluster analysis, and coefficient of divergence. These multivariate statistical analyses produced similar results, which agreed with the results from the diagnostic ratio analysis.  相似文献   

13.
Leaf samples of six tree species were collected along urban roadsides and a campus site in Beijing for measurement of polycyclic aromatic hydrocarbons (PAHs). PAHs in leaves were attributed to two fractions, leaf cuticles and inner leaf tissues, using sequential extraction. Total concentrations of 16 PAHs in the cuticles and the inner tissues were 69.3+/-64.6 microg g(-1) (d.w.) and 1.07+/-0.2 microg g(-1) (d.w.) at roadside and 57.5+/-52.6 microg g(-1) and 0.716+/-0.2 microg g(-1) on campus, respectively. The lipid-normalized inner tissue PAHs varied from 5.8 microg g(-1) to 15.0 microg g(-1). Similarities in PAH spectra between leaf cuticles and airborne particles and between the inner tissues and gaseous phase imply that airborne particulates and gaseous PAHs are likely the sources of PAHs for cuticles and the inner tissues, respectively. Difficulty in migration of heavier PAHs into inner tissues could be another reason.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.  相似文献   

15.
Ambient air samples from a traffic intersection, an urban site and a petrochemical-industrial site (PCI) were collected by using several dry deposition plates, two Microorifice uniform deposited impactors (MOUDIs), one Noll Rotary Impactor (NRI) and several PS-1 (General Metal Work) samplers from March 1994 to June 1995 in southern Taiwan, to characterize the atmospheric particle-bound PAH content of these three areas. Twenty-one individual polycyclic aromatic hydrocarbons (PAHs) were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). In general, the sub-micron particles have a higher PAH content. This is due to the fact that soot from combustion sources consists primarily of fine particles and has a high PAH content. In addition, a smaller particle has a higher specific surface area and therefore may contain more organic carbon, which allows for more PAH adsorption. For a particle size range between 0.31 and 3.2 microm, both Urban/Traffic and PCI/Traffic ratios of particle-bound total-PAH content have the lowest values, ranging from 0.25 to 0.28 (mean = 0.26) and from 0.07 to 0.13 (mean = 0.10), respectively. This indicates that, during the accumulation process, the PAH mass shifted from a particle phase to a gas phase, or the particles aggregated with lower PAH-content particles, resulting in a reduction in particle-bound PAH content. By using the particle size distribution data, the dry deposition model in this study can provide a good prediction for the PAH content of dry deposition materials. In general, lower molecular weight PAHs had a larger fraction of dry deposition flux contributed by the gas phase; for 2-ring PAH (50.4, 46.3 and 28.4%), 3-ring PAHs (15.2, 15.4 and 11.7%) and 4-ring PAHs (13.0, 3.60 and 5.01%) for the traffic intersection, urban and PCI sites, respectively. For higher molecular weight PAHs-5-ring, 6-ring and 7-ring PAHs-their cumulation fraction (F%) of dry deposition flux contributed by the gas phase was lower than 3.26%. At the traffic intersection, urban and PCI sites, the mass median diameter of dry deposition materials (MMD(F)) of individual PAHs was between 25.3 and 49.6 microm, between 27.6 and 43.9 microm, and between 19.1 and 41.9 microm, respectively. This is due to the fact that PAH dry-deposition primarily resulted from gravitational settling of the coarse particulates (> 10 microm).  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) were analysed in mosses (Hypnum cupressiforme) and pine needles (Pinus sylvestris) collected in the Czech Republic between 1988-94 at a regional background site in Kosetice, south Bohemia (1988-94) and two industrial sources. One industrial site (sampled 1989-91) in middle Moravia, was near a factory producing PAHs, carbon black and phthalates, the other (sampled 1991-93) near a coal and gas fuel production plant in western Bohemia. Selected chlorinated pesticides and polychlorinated biphenyl congeners were also analysed in samples at the regional background site. This study clearly shows that vegetation sampling can be used to show spatial differences in the atmospheric burden of a range of persistent organic pollutants with differences in the mixtures of compounds reflecting differences in their regional or local use/atmospheric emission.  相似文献   

17.
From 1994 to 2003, daily air concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) and carbon monoxide (CO) were regularly monitored at two traffic-oriented sampling sites (A and B) in urban Genoa, Italy. The data were used to estimate effects on air quality in real situations due to progressive substitution of EURO-0 vehicles, started in 1993, with less-polluting vehicles (EURO-1, EURO-2), mainly gasoline vehicles with a catalyst. PAH profile classification and diagnostic PAH ratios were used to identify 345 samples of predominantly traffic origin. At both sites, CO and PAH daily concentrations decreased exponentially with time and the apparent half-life values calculated were 6.3 and 5.5 for CO and 3.7 and 3.5 years for PAHs at sites A and B, respectively. At site A, monitored for traffic intensity, multiple regression analyses confirmed that daily PAH and CO concentrations were positively correlated with the number of non-catalytic vehicles estimated to cross this site during sampling and negatively correlated with seasonal variables (air temperature, ozone concentration, relative air humidity). The reduction in air pollution estimated for complete substitution of non-catalytic gasoline vehicles was 89% for BaP, 85% for total PAHs and 69% for CO.  相似文献   

18.
Here we present a simple, economic method of identifying sources of small scale contamination by polycyclic aromatic hydrocarbons (PAHs). The method involves determining the concentrations of the contaminants in the terrestrial moss Pseudoscleropodium purum and consists of the following steps: i) testing for the existence of gradients of decreasing concentrations of PAHs in the moss in relation to distance from different emission sources; ii) measurement of the concentration of PAHs at 35 pairs of sampling sites, each separated by a distance of 1 km; iii) study of the distribution of the differences in concentration between these pairs of sampling sites and elimination of extreme values (affected by small scale sources of contamination); iv) characterization of normal distributions to determine the probability of the data being thus distributed; and v) testing the method in the surroundings of possible sources of small scale contamination by PAHs. The decrease in concentration of all of the compounds followed a steep gradient with increasing distance from the emission source; after elimination of the outliers, the distribution of the differences in concentration between the 35 pairs of sampling sites was normal for all compounds, except benzo(a)pyrene. Application of the method to 15 different types of industries provided satisfactory results and the method proved to be a very useful tool for monitoring and evaluating air quality.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) were determined in the ambient air of six towns in N. Greece. This paper presents the variability of the particle-bound PAHs concentrations and the particle PAH content during the cold and the warm months. Correlations of total PAHs with other atmospheric pollutants were largely different among towns indicating that the relative contribution of emission sources is different in each location. In the warm months PAHs were significantly correlated with vehicular pollutants thus suggesting traffic as the major PAH emmitting source. The same was also deduced from the comparison of the ambient PAH profiles to the profiles of particular sources. The contribution of residential heating was significant in most towns during winter. Principal component analysis of the data did not result in a clear distinction between towns thus suggesting that all are influenced by similar source types. Finally, the risk associated with the inhallation of carcinogenic PAHs in each town was estimated and compared to the risk from more urbanized/industrialized sites in N. Greece.  相似文献   

20.
Cetin B  Odabasi M 《Chemosphere》2008,71(6):1067-1078
Atmospheric concentrations of 7 PBDE congeners (BDE-28, -47, -99, -100, -153, -154 and -209) were determined at four sites (i.e. Suburban, Urban 1, Urban 2, Industrial) in Izmir, Turkey and their gas/particle partitioning was investigated. Total PBDE ( summation operator(7)PBDE) concentrations ranged between 11 (Urban 1) and 149pgm(-3) (Industrial) in summer, while in winter, they ranged from 6 (Suburban) to 81pgm(-3) (Industrial). BDE-209 was the dominant congener at all sites, followed by BDE-99 and -47. Investigation of source profiles indicated that the air samples were dominated by congeners of the penta and deca-technical BDE mixtures. The measured PBDE particle fractions were compared to the predictions of the K(OA) (octanol-air partition coefficient)-based equilibrium partitioning model and to the dynamic uptake model developed by others for passive samplers, which was adapted to model gas-particle partitioning in this study. For BDE-28, good agreement was observed between the experimental particle fractions and those predicted by the equilibrium partitioning model. However, this model overestimated the particle fractions of other congeners. The predictions of the dynamic uptake model supported the hypothesis that the unexpectedly high partitioning of BDEs (except BDE-28) to the gas-phase is due to their departure from equilibrium partitioning. When congeners with very large octanol-air partition coefficients (i.e. BDE-100, -99, -154, -153, and -209) are emitted from their sources in the gas-phase, they may remain in that phase for several months before reaching equilibrium with atmospheric particles. This may also have important implications for the transport of atmospheric PBDEs. For example, in addition to particle-bound transport, the gas-phase transport of highly brominated congeners (i.e. BDE-209) may also be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号