首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Samples of respirable particulate matter collected during a personal monitoring study in Topeka, KS, were analyzed for iron, aluminum, and lead content. The sampling protocol and instrumentation are described in detail. Lead indoor concentrations (median = 79 ng/m3) were found to be less than both personal (median = 112 ng/m3) and outdoor lead concentrations (median = 106 ng/m3). The indoor, outdoor, and personal levels of iron and aluminum were not significantly different. In addition, it was determined that outdoor respirable particulate mass does not correlate well with the personal or indoor metal concentrations, and that the amount of time spent in motor vehicles is a relatively good indicator of lead exposures. The relationships between indoor, outdoor, and personal lead are discussed in greater detail, with references to supporting evidence from other studies.  相似文献   

2.
Measurement of personal exposure to ambient level particulate concentrations is often extremely difficult because of a lack of personal exposure monitors capable of collecting measurable quantities within a meaningful sampling period. A new personal exposure monitor for two fractions of inhalable particulates (i.e., the 3–15 μm aerodynamic diameter and the < 3 μm or respirable fraction) has been developed and characterized. This monitor is capable of collecting a sample of each fraction that is quantifiable with ambient concentrations of inhalable/respirable particulates as low as 25 μg/m3 in a 24-h sampling period. Wind tunnel tests have been made on the particulate personal exposure monitor to determine sampling efficiency as a function of relative wind speed and orientation with respect to the sampler.  相似文献   

3.
Measurement of personal exposure to nitrogen dioxide for short and long term was made with a sensitive NO2 passive sampler by volunteer housewives and office workers in different seasons. These measurements were compared with the simultaneous measurement of outdoor and indoor concentration of the participants. A common result over all the measurements is the potential effect of using an unvented space heater to increase personal exposure. Mean personal exposure and indoor concentration are higher than outdoor levels elevated by the samples exposed to pollutant produced from the heater. Without an NO2 source indoors, the mean outdoor concentrations are always highest among the data of measurement. A time-weighted indoor/outdoor activity model gives modestly improved estimates of personal exposure over those predicted from measured indoor concentrations alone.  相似文献   

4.
Determinants of outdoor, indoor and personal concentrations of nitrogen dioxide (NO2) were assessed in a subset of pregnant women of the Spanish INMA (Environment and Childhood) Study. Home indoor and outdoor NO2 concentrations were measured during 48 h with passive samplers for 50 and 58 women from the INMA cohorts of Valencia and Sabadell, respectively. Women from Sabadell also carried personal NO2 samplers during the same period. Data on time–activity patterns, socio-economic characteristics, and environmental exposures were obtained through questionnaires. Multiple linear regression models were developed to predict NO2 levels.In Valencia, median outdoor NO2 levels (42 µg/m3) were higher than median indoor levels (36 µg/m3). In Sabadell, personal NO2 showed the highest median levels (40 µg/m3), followed by indoor (32 µg/m3) and outdoor (29 µg/m3) levels. Personal exposure to NO2 correlated best with the indoor NO2 levels. Temporal and traffic-related variables were significant predictors for outdoor NO2 levels. Thirty-two percent of the indoor NO2 variability in the two cohorts was explained by outdoor NO2 levels and the use of the gas appliances. The model for personal exposure accounted for 59% of the variance in NO2 levels in Sabadell with four predictor variables (outdoor and indoor NO2 levels, time spent in outdoor environments and time exposed to a gas cooker). No significant association was found between personal or indoor NO2 levels and exposure to environmental tobacco smoke (ETS) at home.Personal NO2 levels were found to be strongly influenced by indoor NO2 concentrations. The study supports the use of time–activity patterns along with indoor measurements to predict personal exposure to traffic-related air pollution.  相似文献   

5.
To date, personal volatile organic compounds (VOCs) exposure and residential indoor and outdoor VOCs levels have not been characterized in Korea. In this study, residential indoor and outdoor VOCs concentrations were measured and compared simultaneously with the personal exposure for each of 30 participants in a medium city, Asan, and in a metropolitan city, Seoul. Factors that influence personal VOCs exposures were assessed in relation to house characteristics and time activity information. All VOC concentrations were measured using passive samplers during a 24-h period and analyzed using GC-MS. Ten target VOCs were benzene, trichloroethylene, toluene, o-xylene, p-xylene, ethylbenzene, MIBK, n-octane, styrene, and 1,2-dichlorobenzene. Residential indoor and outdoor VOCs concentrations measured in Seoul were significantly higher than those in Asan. Indoor/outdoor (I/O) ratios for all target compounds ranged from 0.94 to 1.51 and I/O ratios of Asan were a little higher than those of Seoul. Results indicate that time activity information can be used to predict personal exposures, although such predictions will result in an over estimation compared to measured exposures. Factors which influence the indoor VOCs level and its personal exposure in relation to house characteristics included house age, indoor smoking, and house type.  相似文献   

6.
Personal exposure to nitrogen dioxide (NO2) and time spent in various locations were measured for 66 family members from 19 homes in the Portage, WI area during March 1981. Passive diffusion NO2 monitors were placed outdoors, in the kitchen, and in one bedroom on each floor of the homes, and were worn by family members. Individuals from gas-cooking homes had significantly higher average NO2 exposures than those from homes using electricity for cooking (mean difference 19.37 μg/m3). Personal exposures were more closely related to bedroom levels than to kitchen or outdoor concentrations for both cooking fuel groups. Several preliminary models are presented which relate average personal NO2 exposure to indoor and ambient levels, and also to the proportion of time spent in different locations. These models are capable of explaining nearly 90% of the variation about the mean in personal exposure.  相似文献   

7.
Bushfire fighting is a hazardous occupation and control strategies are generally in place to minimize the hazards. However, little is known regarding firefighters' exposure to bushfire smoke, which is a complex mixture of toxic gases and particles. In Australia, during the prescribed burning season, firefighters are likely to be exposed on a regular basis to bushfire smoke, but whether these exposures affect health has yet to be determined. There are a number of factors that govern whether exposure to smoke will result in short-term and/or long-term health problems, including the concentrations of air pollutants within the breathing zone of the firefighter, the exposure duration, and health susceptibility of the individual, especially for pre-existing lung or heart disease. This paper presents measurements of firefighters' personal exposure to bushfire smoke, the first step within a risk management framework. It provides crucial information on the magnitude, extent and frequency of personal exposure to bushfire smoke for a range of typical scenarios. It is found that the primary air toxics of concern are carbon monoxide (CO), respirable particles and formaldehyde. Also, work activity is a major factor influencing exposure with exposure standards (both average and short-term limits) likely to be exceeded for activities such as suppression of spot fires, holding the fireline, and patrolling at the edge of a burn area in the urban-rural interface.  相似文献   

8.
Four models for human exposure to air pollution are discussed and compared. The simple microenvironment monitoring model measures pollutant concentrations at fixed locations, regarded as proxies for similar locations or microenvironments. Since this model does not require pollutant measurements on the individual level, it is easy to implement. However, the model can only be used to estimate the average exposure in a population, and it does not provide any estimate of the variability and distribution of individual exposures. The replicated microenvironment monitoring model provides some estimates of the variability and distribution. However, because of the possible discrepancy between the microenvironment concentration distribution and the individual concentration distribution, some adjustment might be necessary. Integrated personal monitoring allows direct estimation of the average exposure as well as the variability and distribution of individual exposures. Coupled with the appropriate time budget data, a regression analysis can be applied to estimate the contribution from each microenvironment type. However, possible collinearity problems might result in low precision in those estimates. Moreover, it might be difficult to adjust for a possible Hawthorne effect. Continuous personal monitoring has the advantage of recording exposure in each microenvironment type separately, allowing direct estimation of the average exposure as well as the variability and distribution of exposures in each microenvironment type. Moreover, it can also be conducted in conjunction with a two-stage sampling scheme, using information from a large data base on activity patterns, thereby making more efficient use of the monitoring data. It is also easier to adjust for a possible Hawthorne effect in this design.  相似文献   

9.
On 15 dates, 5000 measurements of carbon monoxide (CO) were made in downtown commercial settings in four California towns and cities (San Francisco, Palo Alto, Mountain View, and Los Angeles), using personal exposure monitoring (PEM) instruments. Altogether, 588 different commercial settings were visited, and indoor and outdoor locations were sampled at each setting. On 11 surveys, two CO PEM's were carried about 0.15–6 m apart, giving 1706 pairs of observations that showed good agreement: the correlation coefficient was r = 0.97 or greater, and the average difference was less than 1 ppm (μL/L) by volume. Of 210 indoor settings (excluding parking garages), 204 (97.1%) had average CO concentrations less than 9 ppm (μL/L); of 368 outdoor settings, 356 (96.7%) had average CO concentrations less than 9 ppm (μL/L). For a given date and commercial setting, CO concentrations were found to be relatively stable over time, permitting levels to be characterized by making only brief visits to each setting. The data indicate that most commercial settings experience CO concentrations above zero indoors, because CO tends to seep into buildings from vehicular emissions outside. Levels in these locations usually are not above 5 ppm (μL/L) and seldom are higher than the U.S. health-related ambient air quality standards for CO. However, indoor garages and buildings with attached indoor parking areas are exceptions and can experience relatively high CO concentrations.  相似文献   

10.
Using integrating NO2 diffusion dosimeters, personal, indoor and outdoor exposures were measured for nine families in Topeka, Kansas. NO2 exposures in homes that used gas for cooking were clearly different from those in homes that used electricity. The gas-cooking homes had indoor levels three times the outdoor levels. Members of the gas-cooking households had levels twice those of electric-cooking families and twice the outdoor levels. A linear model that includes outdoor concentrations and stove types explains 77% of the variance in observed NO2 exposure. The differential NO2 exposures in homes with and without gas stoves should be considered in epidemiologic studies of the health effects of air pollution.  相似文献   

11.
Ozone concentrations exhibit spatial variability within metropolitan areas, resulting in significantly different personal exposures among individuals. This paper uses the statistical technique, kriging, to explore the 12-h daytime (8am–8pm) ozone spatial variation and to predict mean outdoor ozone levels at home sites within the Toronto metropolitan area. Outdoor ozone measurements taken in the Toronto metropolitan area between June and August 1992 are used in kriging models to predict outdoor ozone concentrations. The performance of the model is evaluated by comparing actual home outdoor measurements with predicted values. Results indicate that kriging predictions are more accurate than using only the closest stationary ambient site measurements for determining home outdoor ozone concentrations within the metropolitan area. The average variogram obtained from pooling data throughout the entire sampling period shows a clear spatial trend in the outdoor ozone variation. Kriging predictions using the parameters from the average variogram perform as well as those using variograms from individual days. An approach for minimizing sample bias can be used to increase the accuracy of the predictions; cross-validation suggests that it is a reasonable procedure.  相似文献   

12.
The results of more than 1 yr of air monitoring inside and outside of five homes in each of two communities are presented for SO2, NO2, mass respirable particles, SO4, Al, Br, Cl, Mn, Na, and V. Outdoor measurements across the home site in each city are consistent with proximity to outdoor sources. Looking across indoor residential sites in each city, the home appears to alter outdoor concentrations in several ways. Indoor level of SO2, SO4, Mn, and V are lower than those measured outdoors. These constituents are thought generally to result from outdoor sources. The other constituents studied are at times found in excess within homes. In some cases the source or sources of excess concentration of a particular constituent could be identified; often, however, the source of excess indoor concentration could not be identified.  相似文献   

13.
Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space–time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n = 9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n = 10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r = 0.93) for PM2.5 and moderate (r = 0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r = 0.77) than the model ignoring space–time activity (r = 0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space–time activity (r =  0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r =  0.42 to 0.03). In this urban area, accounting for space–time activity little influenced exposure estimates; in a subgroup of subjects (n = 9), incorporating indoor pollution levels seemed to strongly modify them.  相似文献   

14.
Since the air pollution as measured by stationary monitoring stations is a poor indicator of the population exposure, personal monitors are indispensible to health effects studies. This article reviews the current research on the development of personal monitors. Although most of the analytical methods reviewed in this study appear to be sensitive to the levels of the target pollutants NO2, SO2, and O3 generally encountered in indoor and outdoor air, they lack the desired performance characteristics for a personal monitoring device, such as user safety and ease of operation, weight, and maintenance. Electrochemical transducers/sensors, which have not yet been exploited, are attractive candidates for the application to personal monitoring. This technique has an added feature of generating real-time measurements. A few research models and commercially attractive devices that can be used in field studies are included.  相似文献   

15.
One hundred and ninety-four randomly selected nonsmoking subjects collected air samples in their breathing zone by wearing personal monitors for 24 h. The study was centered in Hong Kong, and comprised housewives in one group, primarily for assessing exposures in the home, and office workers in a second group to assess the contribution of the workplace to overall exposure. Samples collected were analysed for respirable suspended particles (RSP), nicotine, 3-ethenylpyridine, and environmental tobacco smoke (ETS) particles using ultraviolet absorbance (UVPM), fluorescence (FPM), and solanesol measurements (SolPM). Saliva cotinine analyses were also undertaken to confirm the nonsmoking status of the subjects and to investigate their correlation with ETS exposure measurements. Approximately 6% of the subjects in Hong Kong misclassified their nonsmoking status. Median time-weighted average (TWA) RSP concentrations varied from 43 to 54 μg m−3 with no significant differences detected between any of the groups investigated. Office workers who lived and worked with smokers were exposed to 2.6 μg m−3 ETS particles (SolPM) and 0.44 μg m−3 nicotine, based on median TWA concentrations. Median concentrations of ETS particles and nicotine were below the limits of quantification for housewives living with smokers and were not significantly different from those for housewives living with nonsmokers. It would therefore be unreliable in Hong Kong to use a smoking spouse as a marker for assessing health risks related to ETS exposure. The office workers in this study were significantly more exposed to ETS than housewives from either smoking or nonsmoking homes, and the workplace was estimated to contribute over 33% of the annual exposure to ETS particles and nicotine. Exposure estimates suggest that the most highly exposed office workers in this study receive between 11 and 50 cigarette equivalents per year, based upon upper decile levels for ETS particles and nicotine, respectively.  相似文献   

16.
Cooking and heating with coal and biomass is the main source of household air pollution in China and a leading contributor to disease burden. As part of a baseline assessment for a household energy intervention program, we enrolled 205 adult women cooking with biomass fuels in Sichuan, China and measured their 48-h personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO) in winter and summer. We also measured the indoor 48-h PM2.5 concentrations in their homes and conducted outdoor PM2.5 measurements during 101 (74) days in summer (winter). Indoor concentrations of CO and nitrogen oxides (NO, NO2) were measured over 48-h in a subset of ~ 80 homes. Women's geometric mean 48-h exposure to PM2.5 was 80 μg/m3 (95% CI: 74, 87) in summer and twice as high in winter (169 μg/m3 (95% CI: 150, 190), with similar seasonal trends for indoor PM2.5 concentrations (winter: 252 μg/m3; 95% CI: 215, 295; summer: 101 μg/m3; 95% CI: 91, 112). We found a moderately strong relationship between indoor PM2.5 and CO (r = 0.60, 95% CI: 0.46, 0.72), and a weak correlation between personal PM2.5 and CO (r = 0.41, 95% CI: − 0.02, 0.71). NO2/NO ratios were higher in summer (range: 0.01 to 0.68) than in winter (range: 0 to 0.11), suggesting outdoor formation of NO2 via reaction of NO with ozone is a more important source of NO2 than biomass combustion indoors. The predictors of women's personal exposure to PM2.5 differed by season. In winter, our results show that primary heating with a low-polluting fuel (i.e., electric stove or wood-charcoal) and more frequent kitchen ventilation could reduce personal PM2.5 exposures. In summer, primary use of a gaseous fuel or electricity for cooking and reducing exposure to outdoor PM2.5 would likely have the greatest impacts on personal PM2.5 exposure.  相似文献   

17.
A pilot field study was conducted with nine members of the general public to measure carbon monoxide exposure using personal monitors. The principal study objectives were to design and evaluate the research protocol and the instrumentation performance for application to the conduct of a large-scale personal monitoring program. Integrated carbon monoxide exposure was monitored and recorded according to type of activity such as “commuting” or “at work” for approximately 45 days by each subject. All subjects except one were able to handle both the equipment and data recording requirements with no significant problems. Actual data recording responsibilities consumed less than 10 min daily. The data consisted of 355 person-days each over 6-h duration, and weekdays only, from which 8-h average personal exposure levels could be computed. The 9 ppm (μL/L) ambient air quality standard was exceeded on 22 person-days. Elevated carbon monoxide concentrations during the commuting activity were frequently associated with the exceedences.  相似文献   

18.
Epidemiological studies have shown that residential exposure to livestock odors can affect the health and wellbeing of rural citizens. However, exposure–response models for this relationship have not been developed. One of the main challenges is to identify a compound that can be used as proxy for livestock odor exposure. In this paper we developed models that describe the relationship between long-term averaged outdoor residential ammonia (NH3) exposures and livestock odor annoyance experienced by rural residents, and investigated person-related variables associated with annoyance responses. We used emission-based atmospheric dispersion modeling data to estimate household-specific outdoor concentrations and survey data to characterize the study subjects. Binomial and multinomial logistic regressions were used for model development. Residential NH3 exposure was positively associated with moderate, high and extreme odor annoyance (adjusted odds ratio = 10.59; 95% confidence interval: 1.35–83.13, for each unit increase in LogeNH3 exposure). Specific characteristics of the exposed subjects (i.e., age, time per week spent at home, presence of children at home and job) act as co-determinants of odor annoyance responses. Predictive models showed classification accuracies of 67–72%. The results suggest that NH3 exposure in the residential outdoor environment can be used as a predictor of livestock odor annoyance in population studies.  相似文献   

19.
Personal exposures via ingestion of indoor dust to α-, β-, and γ-hexabromocyclododecanes (HBCDs) and the degradation products (pentabromocyclododecenes (PBCDs) and tetrabromocyclododecadienes (TBCDs)) were estimated for 21 UK adults. Under an average dust ingestion scenario, personal exposures ranged from 4.5 to 1851 ng ΣHBCDs day? 1; while the range under a high dust ingestion scenario was 11 to 4630 ng ΣHBCDs day? 1. On average, personal exposure to ΣHBCDs via dust ingestion in this study was 35% α-, 11% β-, and 54% γ-HBCD. However, while exposure to β-HBCD (4–18% of ΣHBCDs) was relatively consistent with the proportion of this diastereomer in the HBCD commercial formulation; exposures to α- and γ-isomers (11–58% and 29–82% of ΣHBCDs respectively) showed substantial variation from the commercial formulation pattern. Personal exposures to ΣTBCDs (median = 0.2 ng day? 1 under an average dust ingestion scenario) and ΣPBCDs (1.4 ng day? 1) were significantly lower (p < 0.05) than for ΣHBCDs (48 ng day? 1). Despite this, the exposure of one participant to ΣPBCDs exceeded the exposure to ΣHBCDs received by 85% of the other participants. On average, house dust provided the major contribution to personal exposure via dust ingestion to all target compounds due to the large time fraction spent in houses. In contrast, although participants spent less time in cars than in offices, car dust makes a higher average contribution (17%) to ΣHBCDs exposure than office dust (13%).  相似文献   

20.
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds.Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5 ng/m3 for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for < 0.8–7.6, 12.1–180.9 and 4.65–105.7 μg/dm2 for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494 ng/h.The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号