首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nudibranchs (Mollusca, Gastropoda) feeding on tentacles and polyps of Cnidaria thereby ingest both latent and discharged nematocysts (NCs) along with the food mass. In eolid nudibranchs (Opisthobranchia, Aeolidacea), many of the undischarged NCs are transported to terminal cnidosacs in their body appendages (cerata) and incorporated as kleptocnidae for defense. In the present report, the occurrence and fate of NCs in the digestive tracts of eolids is compared with hydrozoan-feeding dendronotacean nudibranchs (Opisthobranchia, Dendronotacea), which may show more basic stages in the evolution of cnidosacs. Tomographic reconstructions of the distal tips of cerata were composed from series of semithin light microscopic sections, utilizing 3D-surface rendering software. Doto acuta (Dendronotacea, Dotidae) does not have cnidosacs; transmission electron micrographs show that the NCs are digested in lysosomes of digestive gland cells. In contrast, species of the genus Hancockia (Dendronotacea, Hancockiidae) have several small cnidosacs in each ceras; they accumulate NCs in the digestive cells, as well as in the cnidosacs. Many of the cnidosacs were found open to the exterior with NCs in the process of expulsion. These and other structural details suggest assigning a function of expelling the NCs to the Hancockia spp. cnidosacs. It is proposed that cnidosacs similar to those of Hancockia spp. provide a clue to understanding how the defensive function of eolid cnidosacs may have evolved. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The rare ctenophore Haeckelia rubra (formerly Euchlora rubra) has long been known to have nematocysts rather than colloblasts in its tentacles. Five specimens were collected in the San Juan Archipelago, Washington State, USA in 1980 and 1981, and their feeding behavior was observed in the laboratory. We found that H. rubra readily eats the tentacles of a medusa, Aegina citrea, whose nematocysts (apotrichous isorhizas) are nearly identical in morphology to the nematocysts of the ctenophore. When H. rubra was offered 16 other species of hydromedusae and 1 siphonophore in the laboratory, the ctenophores showed little or no tendency to ingest these potential prey items. In addition to its routinely positive response to A. citrea, the ctenophore could be induced by manipulation and starvation to accept and ingest bits of the bodies of 4 additional species of hydromedusae and 1 siphonophore. These results, combined with the histological and rearing experiments of other investigators, leave little doubt that the nematocysts in H. rubra are not endogenous, but are kleptocnidae similar to those nematocysts retained and subsequently used by some species of nudibranchs that feed on Cnidaria. A close phylogenetic link between the Cnidaria and the Ctenophora is most unlikely.  相似文献   

3.
The nudibranch gastropod Cratena peregrina (Opisthobranchia: Aeolidaceae), when feeding on polyps of the hydrozoan Eudendrium racemosum (Cnidaria: Anthoathecata), devours masses of small microbasic eurytele and holotrichous isorhiza nematocysts. Large proportions of these nematocysts were found undischarged in the alimentary tracts of the snails. Feeding experiments in this study tracked the fate of nematocysts as they passed through the alimentary canal to the digestive gland in the dorsal appendages, the cerata, to the cnidosacs, and finally in the faeces. In digestive cells, many structurally intact nematocysts were present in large phagosomes that remained unaffected even after 2 days fasting, and phagosomes containing nematocysts were found in the faeces. Thus, it is inferred that fusion of nematocyst-containing phagosomes with lysosomes and subsequent digestion of nematocysts is blocked. Masses of exposed, undigested and structurally intact nematocysts were discarded in the faeces. In the tips of the cerata, other nematocysts were phagocytosed by cnidophages and stored in the cnidosacs. After release, in contact with seawater, cnidosac nematocysts were able to discharge. When cnidophore tentacles of E. racemosum with only holotrichous isorhizas were fed to the snails, the isorhizas arrived in the cnidosacs about 2 h after feeding and mixed with existing small euryteles. Some cnidosacs also contained very large microbasic eurytele or large macrobasic eurytele nematocysts, possibly from Eudendrium ramosum and Eudendrium glomeratum, respectively. This indicates that the various types of nematocysts from food were all incorporated into the cnidosacs. Evidence for a selection process or digestion of a certain nematocyst type in the cnidophages was not obtained. It is concluded that a large proportion of the nematocysts ingested with the food are not digested, but are eliminated, structurally and functionally intact, via the alimentary canal and the tips of the cerata.  相似文献   

4.
Aurelia aurita medusae are able to catch their prey with their entire body surface. Catch efficiency in medusae caught in Kiel harbour in May 1985 was found to be highest at the tentacles and lowest at the subumbrella. Surface structures of the medusa as well as the cnidom are described by SEM observations. Microbasic heterotrichous euryteles and atrichous isorhizas were found. Discharged nematocysts on the prey's skin indicate different functions of the two types. The villi in the gastral cavity show a characteristic morphological differentiation that consists of a ciliated distal and a basal area covered by vesicles. Four types of glandular cells were identified by TEM observations. Mucous cell types preferably occur in densely ciliated areas. The presence of serous cells is restricted to the basal region of the gastral villi and gastral cavity where the extracellular predigestion takes place. The time of food passage in young medusae of A. aurita decreases from 19 h at 4°C to 4 h at 22°C.  相似文献   

5.
Aeolid nudibranchs maintain functional nematocysts, which are sequestered from the nudibranchs’ cnidarian prey and provide protection against predators. Some species exhibit extensive variation in incorporated nematocysts, while others maintain a limited number of types. This study examines the apparent diversity in uptake and patterns of nematocyst incorporation among related species. Nematocyst complements were described for four Gulf of Maine nudibranch species in the genus Flabellina exhibiting a variety of feeding strategies and prey specificities. Diet manipulations were performed to examine the response to changing nematocyst availability using a generalist consumer, Flabellina verrucosa, to assess nematocyst uptake based on diet. The flabellinid species examined exhibited significant differences in nematocyst incorporation, reflecting differences in their specificity as predators and nematocyst types available in their natural prey. The nematocyst complement of F. verrucosa was the most variable and differed among collection regions. When diet was manipulated, nematocyst uptake depended on the prey the nudibranchs consumed, but when offered a variety of prey, F. verrucosa selectively preferred nematocysts from scyphistomae. The observed variation in nematocyst uptake among species and regions probably relates to environmental disparities among populations.  相似文献   

6.
Experiments were performed on specimens ofCalliactis parasitica collected near Plymouth in April 1987 and in the Mediterranean between September 1987 and April 1988. Undischarged nematocysts (basitrichous isorhizas) were separated from the acontia of by using 1M glycerol, 1M citrate, 0.5% Nonidet or 0.5% Triton X-100 as isolating agents, or by freezing the acontial tissue. The mechanisms of extrusion were not studied. The effectiveness of 50 mM thioglycolate in discharging nematocysts isolated by the above methods and suspended in Ca- and Mg-free artificial sea water (ASW) was investigated. Nematocysts extruded in glycerol were more responsive to thioglycolate than those extruded in citrate. Capsules isolated in non-ionic detergents, however, and those obtained by freezing were not discharged by thioglycolate. If capsules extruded in glycerol were suspended in ASW and this was replaced with distilled water, they did not respond to thioglycolate. The effect of distilled water was only partly reversible. It was observed that these nematocysts, unlike those ofPelagia noctiluca andAiptasia mutabilis previously investigated, did not release measurable amounts of free Ca2+ during discharge. It is suggested that if calcium is not involved in the mechanism of discharge of isolatedC. parasitica nematocysts then some other ionic species may stabilize the resting condition of these capsules.  相似文献   

7.
Tentacles of the sea anemone, Nematostella vectensis, are covered with hair bundles. Hair bundles were deflected by water jets to test whether they are mechanoreceptors. Electrophysiological recordings confirm that deflections of hair bundles induce transients in membrane current. In a different species of anemone, hair bundle mechanoreceptors are known to change shape and responsiveness according to the activity of chemoreceptors that bind prey-derived compounds including N-acetylated sugars. In Nematostella, hair bundles significantly elongate upon exposure to NANA, an N-acetylated sugar. Based on a bioassay in which discharged nematocysts are counted in gelatin-coated test probes touched to tentacles, we find that NANA shifts vibration dependent discharge of basitrich nematocysts to lower frequencies overlapping those produced during swimming by known prey including planktonic crustaceans. Furthermore, we find for the first time that vibration detection extends at least 2.5 cm beyond the tentacle tips. Thus, Nematostella likely employs its hair bundles to detect swimming movements of nearby prey.  相似文献   

8.
Summary. An evolutionary scenario incorporating recent advances in phylogenetic research begins with an opisthobranch-pulmonate common ancestor that was herbivorous and had some diet-derived chemical defense. The Nudibranchia and their closest relatives, the Notaspidea, form a lineage the ancestors of which had switched to feeding upon sponges and deriving protection from metabolites contained in them. Subsequently there have been repeated shifts in food and defensive metabolites, and trends are evident in the ability to detoxify, sequester and utilize metabolites from food, as well as to synthesize defensive compounds de novo. The Notaspidea display a minor adaptive radiation that foreshadows a more extensive one in the various lineages of nudibranchs. This review emphasizes changes that have occurred within the Holohepatica, or dorid nudibranchs (order Doridacea). Their sister-group, the Cladohepatica, consists of three other orders, Dendronotacea, Arminacea, and Aeolidiacea, in which there has been a shift from sponges to Cnidaria as food. The Dendronotacea often feed upon Octocorallia, which combine spicules, chemical defense, and stinging capsules and thereby suggest a transition from feeding on sponges. A previous diet of Octocorallia is suggested by the defensive use of prostaglandins in the dendronotacean Tethys fimbria, which eats crustaceans. A shift to bryozoans in some Arminacea is accompanied by use of different metabolites. Dorid nudibranchs evidently began as sponge-feeders, but some lineages have shifted to a variety of other food organisms, and others have specialized in the kind of sponges they feed on and how they do it. There have been shifts to bryozoans (Ectoprocta) and ascidians (Chordata: Urochordata) that track metabolites rather than the taxonomy of the food. There is a crude correlation between the genealogy and the defensive metabolites of the sponge-feeding dorids. De novo synthesis is well documented in this order and the metabolites are appropriately positioned so as to have an adaptive effect. The hypothesis that the capacity for de novo synthesis was acquired by gene transfer across lineages is rejected, partly on the basis of different chirality of metabolites in the nudibranchs and their food organisms. Instead it is proposed that there has been a preadaptive phase followed by evolution in a retrosynthetic mode, with selection favoring enzymes that enhance the yield of end products that are already present in the food. Received 5 February 1999; accepted 26 July 1999  相似文献   

9.
Ophiura sarsii was collected in May/June from Banquereau Bank off Nova Scotia, Canada as part of the benthic fauna analyzed in a 2 year clam dredging-impact experiment. In total, 529 O. sarsii specimens were analyzed; 174 (33%) had stomach contents while the rest were empty. Ophiura sarsii is a trophic generalist feeding on at least 31 taxa (52% identified to species) drawn from four phyla: Arthropoda (81.8%), Annelida (13.2%), Mollusca (3%), and Cnidaria (1.5%). However, the diet was largely restricted to two amphipod families (Ampeliscidae and Lysianassidae), accounting for 54–70% of stomach contents at any one sampling period. This diet provides indirect evidence for carnivory. Limited spatial and temporal heterogeneity in the proportion of animals feeding showed no consistent pattern. Where diet composition differed (ANOSIM) it was attributed to the proportion of lysianassid and ampeliscid amphipods consumed. Dredging introduced new dietary items, although diet composition was not significantly altered.  相似文献   

10.
Herein, we characterize a symbiotic relationship between the scyphomedusa Lychnorhiza lucerna and the decapod crustacean Libinia spinosa in Río de la Plata, South America. Of 843 specimens of L. lucerna examined during the study, 69 (8.2 %) hosted L. spinosa within subgenital spaces. The broad spatial and temporal scale of the study, together with the large number of observations made, confirm an association between the two species. Medusae having crab associates were mature and larger than those lacking such symbionts. Adult crabs of both sexes, as well as juveniles and soft-shell individuals, were found as associates of medusae. Analysis of crab stomach contents revealed the presence of nematocysts and copepod remains. Our results suggest that medusae provide protection and possibly access to food for crabs. Benefits related to transportation were not clear and need further evaluation. Crabs of L. spinosa may acquire their scyphozoan symbionts either as larvae planktonic stages or as adult crabs attaching to jellyfish when aggregating close to bottom.  相似文献   

11.
In tropical and subtropical regions of the world, jellyfish stings cause fatalities by means of venom injecting nematocysts. For nematocyst discharge an adequate combination of chemical and mechanical stimulation is required. In order to test whether skin care products can protect against nematocyst discharge, we tested two sunscreens and one lotion applied to pieces of live human skin and exposed them to Cyanea capillata tentacles. (Test specimens were collected in 1990 along the shore of Rømø, Denmark and in the Flensburger Förde.) The fine structure analysis of the cnidom of C. capillata showed a high grade of variation in shape and size. The basic distinctive characteristic for stomocnides and astomocnides, the terminal opening at the tubule tip, could not be found. The identification of spines at the basal tubule of atrichous isorhizas suggested that these should be characterized as basitrichous isorhizas. An association between nematocyst morphology and a special function such as penetration or entanglement was not observed. All nematocyst types penetrated unprotected skin. Parafilm (an inert material) and unprotected skin substrates served as controls. The discharged nematocysts on the skin and Parafilm surfaces were counted using scanning electron microscopy. The percentage of discharged nematocysts on test substance protected skin surfaces ranged from only 7.7 to 38.2%, compared to 100% on the unprotected control skin. In addition to this marked reduction in nematocyst discharge, the relatively few discharged nematocysts on protected skin showed malfunctions, and the injection of venom would have failed because the tubules of the nematocysts did not penetrate the skin. The results indicate a general possibility that human skin may be protected against nematocyst discharge of jellyfish with the application of sunscreen or lotion.  相似文献   

12.
The isolation of a class of bioactive aromatic alkaloid compounds known as pyridoacridines from members of four phyla (Porifera, Chordata-Subphylum Tunicata, Mollusca and Cnidaria) caused some to speculate that they were produced by associated symbionts. We tested this hypothesis by localizing specific metabolites in cells using a combination of visualization methods, including laser-scanning confocal, epifluorescence, and transmission electron microscopy, as well as cell-separation techniques, and chemical analysis. This study demonstrates that large quantities of the pyridoacridine alkaloid dercitamide (=Kuanoniamine C) are localized exclusively in bacteria-free sponge cells in the marine sponge Oceanapia sagittaria (Sollas), and are probably not produced by intracellular symbiotic organisms. We hypothesize that it is unlikely that the pyridoacridines are produced by extracellular bacteria and then transferred to specific sponge cells. The localization of dercitamide in significant concentrations in specific cells throughout the sponge suggests important biological and ecological functions, such as chemical defense against predators and possibly microbial pathogens. If pyridoacridines are produced by the host organism in other phyla, this may be a case of convergent evolution of an efficient and useful biosynthetic pathway.  相似文献   

13.
Distribution and morphology of zooxanthellae were investigated histologically and ultrastructurally in veligers and juveniles of three giant clam species, Tridacna crocea, T. derassa, and T. squamosa. No zooxanthellal cells were associated with gametes. In veliger larvae, zooxanthellae were ingested and digested in the stomach. Within several days after metamorphosis from veliger to a juvenile clam, the zooxanthellal tube, in which zooxanthellae were packed, elongated from the stomach toward the mantle. Zooxanthellae in the tube appeared in a line, and we designated the appearance of the lined zooxanthellae in the mantle of juvenile clams as the first sign of the establishment of symbiosis. The zooxanthellal tubular system developed as the clams grew, particularly in the mantle margin, and then hypertrophied siphonal tissue formed. In zooxanthellal tubes, zooxanthellae usually had intact ultrastructures suggesting that they were photosynthetically active, while the stomach always contained degraded zooxanthellae that were probably discharged from the zooxanthellal tube. Giant clams probably digest zooxanthellae directly, and ingest the secreted photosynthates from zooxanthellae. There may be a selection mechanism to discharge unhealthy zooxanthellae from the mantle into the stomach. In addition to zooxanthellae, digested diatoms and other unidentified digested materials in the stomach suggest that filter-feeding also contributes to giant clam nutrition.  相似文献   

14.
Bioluminescence is the production of visible light by a living organism. The light commonly appears as flashes from point sources (involving one or more cells, usually described as photocytes) or as a glandular secretion. A visible flash usually involves synchronous light emission from a group of cells or, if from a single-celled organism such as a dinoflagellate, from a group of organelles. The number of cells (or organelles) responding synchronously is the main determinant of the flash intensity. Bioluminescence is a common phenomenon in many deep-sea animals and is widespread among the Cnidaria. In this paper, we compare and contrast in situ and laboratory recordings of the bioluminescent responses of specimens of the deep-sea scyphozoans Atolla wyvillei, Atolla vanhoffeni, Atolla parva, Nausithoe rubra, Paraphyllina intermedia, Periphyllopsis braueri and Periphylla periphylla. Displays in all seven species consist of localised flashes and propagated waves of light in the surface epithelium. The first few single waves propagate at rates of up to 60 cm s-1 but subsequent ones in any sequence of stimuli gradually decrease in speed. After several single wave responses, a subsequent stimulus may elicit multiple waves that persist for several seconds. Following such a frenzy, the specimen becomes temporarily refractory to further stimuli, but if rested will recover its normal responses and may produce further frenzies. The dome area, situated above the coronal groove, of the genera Paraphyllina, Periphylla, and Nausithoe is covered with luminescent point sources. Such point sources are generally absent from the dome of species of Atolla. Captured specimens of A. parva also produce secretory bioluminescence, corroborating prior in situ observations of this ability. Secretory bioluminescence in P. periphylla takes the form of scintillating particles released from the lappet margins. We did not observe secretory displays in specimens of any other species in the laboratory, but one instance of apparent secretory luminescence was recorded in situ in a specimen of A. wyvillei.Communicated by J. P. Thorpe, Port Erin  相似文献   

15.
16.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

17.
Ultrastructural observations and histochemical analyses show the presence of immature nematocysts within the cnidosacs of the aeolid nudibranch Spurilla neapolitana. Quantitative and ultrastructural analyses indicate that the immature nematocysts mature within the cnidosacs. The incorporation of unfired immature nematocysts may be the basic mechanism that permits nematocyst uptake, storage and utilization by nudibranchs.  相似文献   

18.
Because of increasing transport and trade there is a growing threat of marine invasive species being introduced into regions where they do not presently occur. So that the impacts of such species can be mitigated, it is important to predict how individuals, particularly passive dispersers are transported and dispersed in the ocean as well as in coastal regions so that new incursions of potential invasive species are rapidly detected and origins identified. Such predictions also support strategic monitoring, containment and/or eradication programs. To determine factors influencing a passive disperser, around coastal New Zealand, data from the genus Physalia (Cnidaria: Siphonophora) were used. Oceanographic data on wave height and wind direction and records of occurrences of Physalia on swimming beaches throughout the summer season were used to create models using artificial neural networks (ANNs) and Na?ve Bayesian Classifier (NBC). First, however, redundant and irrelevant data were removed using feature selection of a subset of variables. Two methods for feature selection were compared, one based on the multilayer perceptron and another based on an evolutionary algorithm. The models indicated that New Zealand appears to have two independent systems driven by currents and oceanographic variables that are responsible for the redistribution of Physalia from north of New Zealand and from the Tasman Sea to their subsequent presence in coastal waters. One system is centred in the east coast of northern New Zealand and the other involves a dynamic system that encompasses four other regions on both coasts of the country. Interestingly, the models confirm, molecular data obtained from Physalia in a previous study that identified a similar distribution of systems around New Zealand coastal waters. Additionally, this study demonstrates that the modelling methods used could generate valid hypotheses from noisy and complicated data in a system about which there is little previous knowledge.  相似文献   

19.
The corallimorpharian Rhodactis rhodostoma (Ehrenberg, 1934) forms aggregations that dominate patches on some coral reef flats in the Red Sea. The outcomes and mechanisms of competition for space between this corallimorpharian and other sessile organisms are poorly understood. Polyps of R. rhodostoma were observed to overgrow zoanthids, hydrozoan corals, sponges and encrusting macroalgae on a fringing reef at Eilat, northern Red Sea. R. rhodostoma polyps also damaged, and in some cases overgrew, reef-building corals in the families Poritidae, Acroporidae and Pocilloporidae, most of which form branching colonies with small polyps that are subordinate in coral competitive hierarchies. In contrast, most stony corals in the families Faviidae and Mussidae had standoff interactions with R. rhodostoma, in which they prevented the corallimorpharians from damaging them or approaching closer than 1 to 3 cm. The latter corals are ranked at the top of competitive hierarchies for Indo-Pacific corals, and they form massive colonies of large polyps which may develop aggressive organs termed sweeper tentacles. Some soft corals that exude allelopathic chemicals also avoided overgrowth by the corallimorpharians. Tentacles along the oral disk margin of R. rhodostoma polyps were swollen and bulbous during contacts with cnidarians. These bulbous marginal tentacles had significantly thicker ectoderm and a higher proportion of holotrichous nematocysts than did the normally filiform marginal tentacles of R. rhodostoma polyps. It is concluded that, on the reef flat at Eilat, this corallimorpharian damages and overgrows a variety of sessile competitors, including branching stony corals, via the application of specialised marginal tentacles filled with penetrating nematocysts. R. rhodostoma is an intermediate competitor in the aggressive hierarchy among Indo-Pacific Anthozoa, including the reef-building corals. Received: 1 July 1998 / Accepted: 24 March 1999  相似文献   

20.
Gross  Jürgen  Hilker  Monika 《Chemoecology》1994,5(3-4):185-189
Summary The exocrine glandular secretions of larvae of the subfamily Chrysomelinae are known to repel conspecific adults, other competitive phytophagous insects and natural enemies. InPhaedon cochleariae, the intraspecific activity of tlc fractions of the larval secretion was tested in order to examine the ecological significance of two fractions containing minor components and a fraction containing the major compound, the cyclopentanoid monoterpene (epi)chrysomelidial. InChrysomela lapponica, the defensive activity of the larval secretion against ants is known from specimens feeding upon willow or birch. The feeding preferences of larvae and adults ofC. lapponica from a Finnish and a Czech population were tested. The Finnish individuals significantly preferred feeding uponSalix borealis, whereas they hardly fed upon birch. The Czech specimens clearly preferred birch (Betula pubescens) to willow species. Application of salicin onto leaves of a willow species free of this phenolglycoside revealed that the Finnish individuals preferred feeding upon leaves with salicin. On the other hand, the Czech individuals avoided feeding upon leaves ofB. pubescens treated with salicin. The chemical composition of the glandular secretion of the Finnish larvae differed from the one of the Czech larvae. GC-MS-analyses of the secretions revealed that salicylaldehyde was the only major component of the secretion of Finnish larvae feeding upon the salicin-containing willowS. borealis. The glandular secretion of the Czech larvae feeding upon birch contained numerous esters of isobutyric acid and 2-methylbutyric acid. When Czech larvae had fed upon a salicin-containing willow (S. fragilis), the major compounds of their secretion were benzoic acid, salicylalcohol and benzoic acid esters; salicylaldehyde was only detected in traces. Thus,C. lapponica individuals from the Finland population adapted so closely to a salicincontaining willow that they clearly prefer this plant for food and that they obviously derive their main larval defensive compound (salicylaldehyde) from their host-plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号