首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We sampled fine particles (PM2.5) over a 1-year period at 21 central urban monitoring sites in 20 cities of the European Community Respiratory Health Survey (ECRHS). Particle filters were then analysed for elemental composition using energy dispersive X-ray fluorescence spectrometry and reflectance (light absorption). Elemental analyses yielded valid results for 15 elements (Al, As, Br, Ca, Cl, Cu, Fe, K, Mn, Pb, S, Si, Ti, V, Zn).Annual and seasonal means of PM2.5, reflectance, and elements show a wide range across Europe with the lowest levels found in Iceland and up to 80 times higher concentrations in Northern Italy. This pattern holds for most of the air pollution indicators. The mass concentration of S did constitute the largest fraction of the analysed elements of PM2.5 in all locations. The crustal component varies from less than 10% up to 25% across these cities. Temporal correlations of daily values vary considerably from city to city, depending on the indicators compared. Nevertheless, correlations between estimates of long-term exposure, such as annual means, are generally high among indicators of PM2.5 from anthropogenic sources, such as S, metals, and reflectance. This highlights the difficulty to disentangle effects of specific sources or PM constituents in future health effect analyses using annual averages.  相似文献   

2.
利用ICP-AES分析了潞城市采暖期和非采暖期4个不同功能区PM10样品中16种化学元素,对不同元素的时空分布特征进行了研究,并采用富集因子和主成分分析初步研究了潞城市PM10中元素的主要来源。结果表明,潞城市PM10中重金属污染较为严重,且各元素在采暖期的平均浓度均明显高于非采暖期。PM10中Ca、V、Cr、As、Ni、Mn、Cu、Zn、Al和Pb的富集因子EF〉10,主要来源于人为污染;而Na、Mg、Si、Fe和K的EF〈10,除部分来自人为活动外,主要来自土壤风沙等自然来源。主成分分析结果显示,潞城市PM10中元素的主要来源按贡献率大小依次为:煤烟尘和工业粉尘50.39%,自然源34.37%和机动车尾气15.24%。  相似文献   

3.
ABSTRACT

This paper presents and discusses the results obtained from the gravimetric and chemical analyses of the 24-hr average dichotomous samples collected from five sites in the El Paso-Cd. Juarez air quality basin between August 1999 and March 2000. Gravimetric analysis was performed to determine the temporal and spatial variations of PM2.5 (particulate matter less than 2.5 um in diameter) and PM2.5-10 (particulate matter less than 10 μm but greater than 2.5 μm in diameter) mass concentrations. The results indicate that ~25% of the PM10 (i.e., PM2.5 + PM2.5-10) concentration is composed of PM2.5. Concurrent measurements of hourly PM concentrations and wind speed showed strong diurnal patterns of the regional PM pollution. Results of X-ray fluorescence (XRF) elemental analyses were compared to similar but limited studies performed by the Texas Natural Resource Conservation Commission (TNRCC) in 1990 and 1997. Major elements from geologic sources—Al, Si, Ca, Na, K, Fe, and Ti—accounted for 35% of the total mass concentrations in the PM2.5-10 fraction, indicating that geologic sources in the area are the dominant PM sources. Levels of toxic trace elements, mainly considered as products of anthropogenic activities, have decreased significantly from those observed in 1990 and 1997.  相似文献   

4.
Yatkin S  Bayram A 《Chemosphere》2008,71(4):685-696
Samples of PM10 and PM2.5 were collected from several natural and anthropogenic sources using in-stack cyclone, grab sampling/resuspension chamber and ambient air samplers. The chemical characterization of the samples was achieved containing Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V and Zn using an inductively coupled plasma-optical emission spectrometer (ICP-OES). The elemental fractions (weight percent by mass), standard deviations and uncertainties were reported. The elemental compositions of PM emitted from mineral industries and cement kiln were dominated by terrestrial elements, particularly Ca, whereas the profile of top-soil mainly contained Al and Ca. The profiles of industrial sources were generally typical for related ones; however, significant differences were obtained for some of them. Similarly, the profiles of fuel burning emissions have significant differences compared to profiles obtained all around the world.  相似文献   

5.
An elemental composition study of atmospheric aerosols from the City of Colima, in the Western Coast of Mexico, is presented. Samples of PM(15)-PM(2.5) and PM(2.5) were collected with Stacked Filter Units (SFU) of the Davis design, in urban and rural sites, the latter located between the City of Colima and the Volcán de Colima, an active volcano. Elemental analyses were carried out using Particle Induced X-ray Emission (PIXE). The gravimetric mass concentrations for the fine fraction were slightly higher in the urban site, while the mean concentrations in the coarse fraction were equal within the uncertainties. High Cl contents were determined in the coarse fraction, a fact also observed in emissions from the Volcán de Colima by other authors. In addition to average elemental concentrations, cluster analysis based on elemental contents was performed, with wind speed and direction data, showing that there is an industrial contributor to aerosols North of the urban area. Moreover, a contribution from the volcanic emissions was identified from the grouping of S, Cl, Cu, and Zn, elements associated to particles emitted by the Volcán de Colima.  相似文献   

6.
Compelling evidence indicates that exposure to urban airborne particulate matter (PM) affects health. However, how PM components interact with PM-size to cause adverse health effects needs elucidation, especially when considering soil and anthropogenic sources. We studied PM from Mexicali, Mexico, where soil particles contribute importantly to air pollution, expecting to differentiate in vitro effects related to PM-size and composition. PM samples with mean aerodynamic diameters ≤2.5μm (PM(2.5)) and ≤10μm (PM(10)) were collected in Mexicali (October 2005-March 2006) from a semi-urban (expected larger participation of soil sources) and an urban (predominately combustion sources) site. Samples were pooled by site and size, analyzed for elemental composition (particle-induced X-ray emission) and tested in vitro for: induction of human erythrocytes membrane disruption (hemolysis) (colorimetrically); inhibition of cell proliferation (ICP) (crystal violet) and TNFα/IL-6 secretion (ELISA) using J774.A1 murine monocytic cells; and DNA degradation using Balb/c3T3 cell naked DNA (electrophoretically). Results of PM elemental composition principal component analysis were used in associating cellular effects. Sixteen elements identified in PM grouped in two principal components: Component(1) (C(1)): Mg, Al, Si, P, Cl, K, Ca, Ti, V, Cr, Fe, and Component(2) (C(2)): Cu, Zn. Hemolysis was predominately induced by semi-urban-PM(10) (p<0.05) and was associated with urban-PM(10)C(1) (r=0.62, p=0.003). Major ICP resulted with semi-urban PM(2.5) (p<0.05). TNFα was mainly induced by urban samples regardless of size (p<0.05) and associated with urban-PM(2.5)C(2) (r=0.48, p=0.02). Both PM(10) samples induced highest DNA degradation (p<0.05), regardless of location. We conclude that PM-size and PM-related soil or anthropogenic elements trigger specific biological-response patterns.  相似文献   

7.
The elemental compositions of the water-soluble and acid-digestible fractions of 24-hr integrated fine particulate matter (PM(2.5)) samples collected in Steubenville, OH, from 2000 to 2002 were determined using dynamic reaction cell inductively coupled plasma-mass spectrometry. The water-soluble elemental compositions of PM(2.5) samples collected at four satellite monitoring sites in the surrounding region were also determined. Fe was the most abundant but least water soluble of the elements determined at the Steubenville site, having a mean ambient concentration of 272 ng/m3 and a median fractional solubility of 6%. Fe solubility and its correlations with SO4(2-) and temperature varied significantly by season, consistent with the hypothesis that secondary sulfates may help to mobilize soluble Fe under suitable summertime photochemical conditions. Significantly higher ambient concentrations were observed at Steubenville than at each of the four satellite sites for 10 of the 18 elements (Al, As, Ca, Cd, Fe, Mg, Mn, Na, Pb, and Zn) determined in the water-soluble PM(2.5) fraction. Concentrations of Fe, Mn, and Zn at Steubenville were substantially higher than concentrations reported recently for larger U.S. cities. Receptor modeling identified seven sources affecting the Steubenville site. An (NH4)2SO4-dominated source, likely representing secondary PM(2.5) from coal-fired plants to the west and southwest of Steubenville, accounted for 42% of the PM(2.5) mass, and two sources likely dominated by emissions from motor vehicles and from iron and steel facilities in the immediate Steubenville vicinity accounted for 20% and 10%, respectively. Other sources included an NH4NO3 source (15%), a crustal source (6%), a mixed nonferrous metals and industrial source (3%), and a primary coal combustion source (3%). Results suggest the importance of very different regional and local source mechanisms in contributing to PM(2.5) mass at Steubenville and reinforce the need for further research to elucidate whether metals such as Fe, Mn, and Zn play a role in the PM(2.5) health effects observed previously there.  相似文献   

8.
Phoenix, AZ, experiences high particulate matter (PM) episodes, especially in the wintertime. The spatial variation of the PM concentrations and resulting differences in exposure is of particular concern. In this study, PM2.s (PM with aerodynamic diameter <2.5 microm) and PM10 (PM with aerodynamic diameter <10 microm) samples were collected simultaneously from the east and west sides of South Phoenix and at a control site in Tempe and analyzed for trace elements and bulk elemental and organic carbon. Measurements showed that although PM2.5 concentrations had similar trends in temporal scale across all sites, concentrations of PM10 did not. The difference in PM10 concentrations and fluctuation across the three sites suggest effects of a local soil source as evidenced by high concentrations of Al, Ca, and Fe in PM10. K and anthropogenic elements (e.g., Cu, Pb, and Zn) in PM2.5 samples on January 1 were strikingly high, suggesting the influence of New Year's fireworks. Concentrations of toxic elements (e.g., Pb) in the study presented here are not different from similar studies in other U.S. cities. Application of principal component analysis indicated two broad categories of emission sources--soil and combustion--together accounting for 80 and 90% of variance, respectively, in PM2.5 and PM10. The soil and combustion components explained approximately 60 and 30% of the variance in PM10, respectively, whereas combustion sources dominated PM2.5 (>50% variance). Many elements associated with anthropogenic sources were highly enriched, with enrichment factors in PM2.5 an order of magnitude higher than in PM10 relative to surface soil composition in the study area.  相似文献   

9.
The present study investigated the comprehensive chemical composition [organic carbon (OC), elemental carbon (EC), water-soluble inorganic ionic components (WSICs), and major & trace elements] of particulate matter (PM2.5) and scrutinized their emission sources for urban region of Delhi. The 135 PM2.5 samples were collected from January 2013 to December 2014 and analyzed for chemical constituents for source apportionment study. The average concentration of PM2.5 was recorded as 121.9 ± 93.2 μg m?3 (range 25.1–429.8 μg m?3), whereas the total concentration of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br, Pb, Fe, Zn, and Mn) was accounted for ~17% of PM2.5. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation, which was observed to be in good agreement with the gravimetric mass. Source apportionment of PM2.5 was carried out using the following three different receptor models: principal component analysis with absolute principal component scores (PCA/APCS), which identified five major sources; UNMIX which identified four major sources; and positive matrix factorization (PMF), which explored seven major sources. The applied models were able to identify the major sources contributing to the PM2.5 and re-confirmed that secondary aerosols (SAs), soil/road dust (SD), vehicular emissions (VEs), biomass burning (BB), fossil fuel combustion (FFC), and industrial emission (IE) were dominant contributors to PM2.5 in Delhi. The influences of local and regional sources were also explored using 5-day backward air mass trajectory analysis, cluster analysis, and potential source contribution function (PSCF). Cluster and PSCF results indicated that local as well as long-transported PM2.5 from the north-west India and Pakistan were mostly pertinent.  相似文献   

10.
The Monterrey Metropolitan Area (MMA) has shown a high concentration of PM2.5 in its atmosphere since 2003. The contribution of possible sources of primary PM2.5 and its precursors is not known. In this paper we present the results of analyzing the chemical composition of sixty 24-hr samples of PM2.5 to determine possible sources of PM2.5 in the MMA. The samples were collected at the northeast and southeast of the MMA between November 22 and December 12, 2007, using low-volume devices. Teflon and quartz filters were used to collect the samples. The concentrations of 16 airborne trace elements were determined using x-ray fluorescence (XRF). Anions and cations were determined using ion chromatography. Organic carbon (OC) and elemental carbon (EC) were determined by thermal optical analysis. The results show that Ca had the maximum mean concentration of all elements studied, followed by S. Enrichment factors above 50 were calculated for S, Cl, Cu, Zn, Br and Pb. This indicates that these elements may come from anthropogenic sources. Overall, the major average components of PM2.5 were OC (41.7%), SO4(2-) (22.9%), EC (7.4%), crustal material (11.4%), and NO3- (12.6%), which altogether accounted for 96% of the mass. Statistically, we did not find any difference in SO4(2-) concentrations between the two sites. The fraction of secondary organic carbon was between 24% and 34%. The results of the factor analysis performed over 10 metals and OC and EC show that there are three main sources of PM2.5: crustal material and vehicle exhaust; industrial activity; and fuel oil burning. The results show that SO4(2-), OC, and crustal material are important components of PM2.5 in MMA. Further work is necessary to evaluate the proportion of secondary inorganic and organic aerosol in order to have a better understanding of the sources and precursors of aerosols in the MMA.  相似文献   

11.
Elemental compositions were measured for TSP (total suspended particulate matter), PM2−10 and PM2 (particulate matter with aerodynamic diameters from 2 to 10 μm and less than 2 μm, respectively) in Ho Chi Minh City. Concentrations of 23 elements and particulate mass (PM) were used for receptor modelling to identify and quantify aerosol sources using principal component factor analysis (PCFA). A suite of factors containing similar elements with significant factor loadings were revealed among the factor matrices, thus facilitating the identification of common sources for different aerosol types. These sources include vehicular emissions (Br and Zn), coal burning (Se), industrial processes (Ce, Co, Cr, Pb and Sb), road dust (Al, Ti, V), soil dust (Fe and Th) and biomass burning (K). Marine aerosols (Na and Cl) and mineral fly ash (Sc and La) were revealed only in the PM2−10 model. For TSP, the last four sources are combined in one factor. The last (9th) factor in the PM2 model, characterised by a high loading from PM and insignificant loadings from elements, was attributed to secondary sulphates and organics, although these constituents were not measured in the experiments. Such a remarkable source identification capability of the modelling technique highlights the significance of achieving an optimal factor solution as a crucial step in PCFA, that was done by systematically varying the number of factors retained and carefully evaluating each factor matrix for both model fitting performance and physical reasonableness.  相似文献   

12.
To investigate the spatial distribution and diurnal variation of the chemical composition of PM2.5 pollution in an industrial city of southern Taiwan, 12-h PM2.5 was diurnally continuously collected simultaneously at the Kaoping Air Quality Zone (KAQZ) during one highly PM2.5-polluted episode. Water-soluble ions, metallic elements, carbonaceous contents, dicarboxylic acids, and anhydrosugars were analyzed to characterize the chemical fingerprint of PM2.5. Backward trajectory simulation and chemical mass balance (CMB) receptor modeling were applied to identify the potential sources of PM2.5 and their contributions. It showed that Chaozhou (rural area) accompanying the highest SORs and NORs suffered from the most severe PM2.5 pollution during the episode. Sulfate (SO42−) was probably formed by the atmospheric chemical reaction in the daytime, while NO3− processed at nighttime at the KAQZ. A homogeneous formation of NO3− occurred at Chaozhou. The concentrations of Zn, Pb, Fe, Cu, V, and Al, mainly emitted from anthropogenic sources, increased significantly at the KAQZ. The highest OC, SOC/OC, and DA/OCs at Daliao (industrial area) were attributed to the transformation of primary VOCs to secondary OC via photo-oxidation during the episode. Oxalic acid was mainly produced through photochemical reactions since a high correlation between oxalic acid and Ca2+ was observed at Nanzi (urban area) and Daliao during the episode. During the episode, PM2.5 mostly originated from local primary or secondary aerosol than long-range overseas transport. The dominant source was anthropogenic emissions, accounting for 67.1% and 70.4% of PM2.5 at Nanzi and Daliao, respectively. At Chaozhou, the contribution of anthropogenic emissions was the lowest (42.4%), but secondary aerosols had the highest contribution of 38.3% of PM2.5 among the three areas during the episode.  相似文献   

13.
Aerosol samples collected in three characteristic Chilean cities-including urban and remote zones-have been analyzed by the PIXE spectroscopic technique. Elemental composition, total suspended particulate matter (TSP), particle size distribution, and the peculiar geographic and meteorological parameters have been included in this study. Santiago--the polluted capital of Chile--registered high TSP indexes and important amounts of hazardous elements in air such as S, V, Cr, Zn, Br and Pb. The atmosphere of Antofagasta city showed marine and mineral activity influence. Results from Chillán city are similar to those from rural environments. Protons and deuterons-provided by the isochronous cyclotron of the University of Chile-were used to excite X-ray radiation from the sample. Signals were processed by an energy dispersive detection system, including a cryogenic Si(Li) detector, electronic for pulse amplification and an analog to digital converter. The absolute elemental concentration of the particulate matter in air was obtained through a fundamental parameter equation. Samples consist of particulate material collected directly on Nuclepore filters or deposited over Kapton foils. Typical elements analyzed were Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, As, Br and Pb.  相似文献   

14.
To investigate the characteristics of Asian dust storm particles as single particles in Japan, we measured morphology, composition and concentration of single particles using Scanning Electron Microscope (SEM) coupled with an energy dispersive X-ray microanalyzer (EDX), particle induced X-ray emission (PIXE) and micro-PIXE. Particles were sampled in Kyoto, Japan from the middle of April to the end of July 1999. Mass concentration in Asian dust–storm events was roughly 3–5 times higher than that of the highest concentration measured in non-Asian dust storm seasons. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements such as Si, Fe, Ca and Al. Particles which have more than 40% Si content comprised nearly 50% of coarse single particles in Asian dust storm events. Main concentration range of Al in single Asian dust storm particles was 10–20%, and those of Ca and Fe were below 10%. Even though S and Cl in soils of the desert and loess areas in northwest of China were not detected, significant concentration of S and Cl in coarse fraction in Asian dust storm event were detected in single particles. Especially, the maximum concentration of S in Asian dust storm event was about 5 times higher than that in non-Asian dust storm days. Every single particle in coarse fraction existed as the mixing state of soil components and S. Good agreement between the results of SEM–EDX analysis and that of micro-PIXE analysis was obtained in this study.  相似文献   

15.
Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks.  相似文献   

16.
This paper presents and discusses the results obtained from the gravimetric and chemical analyses of the 24-hr average dichotomous samples collected from five sites in the El Paso-Cd. Juarez air quality basin between August 1999 and March 2000. Gravimetric analysis was performed to determine the temporal and spatial variations of PM2.5 (particulate matter less than 2.5 microm in diameter) and PM25-10 (particulate matter less than 10 pm but greater than 2.5 microm in diameter) mass concentrations. The results indicate that approximately 25% of the PM10 (i.e., PM25 + PM25-10) concentration is composed of PM2.5. Concurrent measurements of hourly PM concentrations and wind speed showed strong diurnal patterns of the regional PM pollution. Results of X-ray fluorescence (XRF) elemental analyses were compared to similar but limited studies performed by the Texas Natural Resource Conservation Commission (TNRCC) in 1990 and 1997. Major elements from geologic sources-Al, Si, Ca, Na, K, Fe, and Ti-accounted for 35% of the total mass concentrations in the PM2.5-10 fraction, indicating that geologic sources in the area are the dominant PM sources. Levels of toxic trace elements, mainly considered as products of anthropogenic activities, have decreased significantly from those observed in 1990 and 1997.  相似文献   

17.
Samples of particulate matter were collected during the period from October 2006 through September 2007 in a rural station located 12 km from the city of Colima. A total of 3600 particles were analyzed by SEM-EDS and then classified by their chemical composition and morphology in order of abundance: those rich in C, Fe, Si–Al, Cl–Na, Ca, Ba; and to a lesser abundance, particles rich in heavy metals such as Pb and V–Ni were observed. A factorial analysis was carried out to determine the main elements related with the emission sources such as crustal/farming; fuel-oil; marine; volcanic activity and industry. Trough the seasons, the dominant winds causes the presence of anthropogenic particles in the rural site. The information presented in this study aims to give insight and detailed of the analysis of the morphological characteristics and chemical composition of atmospheric particles at individual level in a rural site from Colima State, Mexico.  相似文献   

18.
A systematic method combining water and diluted-acid extractions has been developed for the manifold evaluation of soluble and insoluble fractions in ambient aerosol. The pre-washed regenerated cellulose membrane filter was used as a collection medium of a low-volume air sampler. The collection time of 7–14 days was required to obtain the sample amounts enough for the systematic analysis. Simple and efficient extraction procedures using the filtration of water and 0.1 M hydrochloric acid were recommended in order to obtain the information about the dissolution behaviors of various elements in the aerosol. Soluble components in both the extracts were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and ion chromatography (IC). These extraction procedures were also preferred to prepare thin-layer specimens suitable to the succeeding X-ray fluorescence spectrometry (XRF) for insoluble components. Elemental compositions of the extraction residues were conveniently determined by the XRF calibrated with thin-layer standard specimens prepared with activated carbon. The determination of the 17 representative elements (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Br, Pb) in these three fractions from an aerosol sample was performed rapidly within 4 h. The proposed systematic method was applied to PM2.5 and PM10 aerosol samples collected in Kofu City, Central Japan, and the enrichment behaviors of various elements and their source apportionment such as soil, anthropogenic substances and vehicle exhaust particulates could be demonstrated by the present method.  相似文献   

19.
The Chinese Loess Plateau (CLP) receives and potentially contributes to Asian dust storms that affect particulate matter (PM) concentrations, visibility, and climate. Loess on the CLP has experienced little weathering effect and is regarded as an ideal record to represent geochemical characteristics of Asian paleo dust. Samples were taken from 2-, 9-, and 15-m depths (representing deposition periods from approximately 12,000 to approximately 200,000 yr ago) in the Xi Feng loess profile on the CLP. The samples were resuspended and then sampled through total suspended particulates (TSP), PM10, PM2.5, and PM1 (PM with aerodynamic diameters < approximately 30, 10, 2.5, and 1 microm, respectively) inlets onto filters for mass, elemental, ionic, and carbon analyses using a Desert Research Institute resuspension chamber. The elements Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca2+), organic carbon, and carbonate carbon are the major constituents (> 1%) in loess among the four PM fractions (i.e., TSP, PM10, PM2.5, and PM1). Much of Ca is water soluble and corresponds with measures of carbonate, indicating that most of the calcium is in the form of calcium carbonate rather than other calcium minerals. Most of the K is insoluble, indicating that loess can be separated from biomass burning contributions when K+ is measured. The loess has elemental abundances similar to those of the upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr, and Ni, but substantially different ratios for other elements such as Ca, Co, Cu, As, and Pb. These suggest that the use of UCC as a reference to represent pure or paleo Asian dust needs to be further evaluated. The aerosol samples from the source regions have similar ratios to loess for crustal elements, but substantially different ratios for species from anthropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb), indicating that the aerosol samples from the geological-source-dominated environment are not a "pure" soil product as compared with loess.  相似文献   

20.
An urban community PM10 (particulate matter < or = 10 microm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号