首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The use of natural resources for the removal of phenol and phenolic compounds is being looked upon by researchers in preference to other prevailing methods. In the present study, different biosorbents, brown algae (Padina pavonia), fresh water macrophyta (Ceratophyllum demersum), and black tea residue, were tested as adsorbent for the removal of phenol from aqueous solutions. The optimum conditions for maximum adsorption in terms of concentration of the adsorbate and pH were identified. The results show that the initial concentration increases as the removal of phenol increases in C. demersum; in the case of the other two adsorbents, the initial concentration increases as the removal of phenol decreases, especially for an initial concentration lower than 100 and 1,000 μg/L for P. pavonia and black tea residue, respectively. Maximum percentage removal of phenol by each adsorbent is 77, 50.8, and 29 % for C. demersum, P. pavonia, and black tea residue, respectively. Also, the biosorption capacity was strongly influenced by the pH of the aqueous solution with an observed maximum phenol removal at pH of around 6–10. The first biosorbent (black tea residue) displays the maximum adsorption capacity at a pH of 10 with a percentage sorption capacity of 84 %; P. pavonia revealed a greater adsorption percentage at pH?10, reaching 30 %, while for C. demersum, the removal of phenol increases with the increase in initial pH up to 6.0 and decreases drastically with further increase in initial pH. The Freundlich, Langmuir, and Brauner–Emmet–Teller adsorption models were applied to describe the equilibrium isotherms. The results reveal that the equilibrium data for all phenol adsorbents fitted the Freundlich model which seemed to be the best-fitting model for the experimental results with similar values of coefficient of determination.  相似文献   

2.
The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.  相似文献   

3.
Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g?1 at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.  相似文献   

4.
In this research, montmorillonite nanoclay (MNC) and vermiculite were used to adsorb ammonium (NH4 +) from simulated wastewater. The effect of organic acids, cations, and anions on adsorption of NH4 + was also studied using batch experiments. The presence of organic acids significantly decreased the NH4 + adsorption using both adsorbents and the reduction followed the order of citric acid > malic acid > oxalic acid. The presence of cations in wastewater could decrease the adsorption of NH4 + and the ion exchange selectivity on the MNC and vermiculite followed the orders Mg > Ca ≥ K > Na and Mg > > Ca > Na > K, respectively. Adsorption of NH4 + by adsorbents in the presence of sulfate (SO4) was higher than those in the presence of phosphate (PO4) and chloride (Cl) anions. Results indicated that MNC and vermiculite had good potential for NH4 + removal depending on adsorbent dosage, pH, contact time, and initial NH4 + concentration. The effect of pH on removal of NH4 + indicated that MNC would be more appropriate as the adsorbent than vermiculite at low pH values. Kinetic analysis demonstrated that the rate-controlling step adsorption for NH4 + by MNC and vermiculite was heterogeneous chemisorption and followed the pseudo-second-order model. The desorption experiments indicated that the adsorption of NH4 + by adsorbents was not fully reversible, and the total recovery of adsorbed NH4 + for MNC and vermiculite varied in the range of 72 to 94.6% and 11.5 to 45.7%, respectively. Cation exchange model (CEM) in PHREEQC program was used to simulate NH4 + adsorption. Agreement between measured and simulated data suggested that CEM was favored in simulating adsorption of NH4 + by clay minerals. The results indicated that MNC and vermiculite have good performance as economic and nature-friendly adsorbents that can ameliorate the water and environment quality.  相似文献   

5.
The adsorption of metals from aqueous solutions of Pb2+, Zn2+ and Mg2+ on naturally occurring pyrolusite have been studied. The chemical stability of the pyrolusite has been determined in NaOH, H2SO4, HNO3, HCl, NaCl and NK4Cl solutions of various concentrations. Adsorption of the metal ions followed the order Pb2+>Zn2+>Cd2+.The maximum adsorption of Pb2+ (100%) occurred at pH 7. the relation between the amount of Pb2+ adsorbed per unit weight of pyrolusite and the concentration of Pb2+ at equilibrium follows the Freundlich adsorption isotherm.The efficiency of pyrolusite has been demonstrated by removing lead from synthetic waste water. 100% and 96% removal of lead have been achieved from synthetic waste water containing 5 mg l–1 and 120 mg l–1 of Pb2+ respectively at pH 7. The results of these studies suggest that pyrolusite might provide an economical method for the removal of lead from industrial waste water.  相似文献   

6.
Nitrate (NO(3)(-)) is a commonly found contaminant in groundwater and surface water. It has created a major water quality problem worldwide. The laboratory batch experiments were conducted to investigate the feasibility of HCl-treated zero-valent iron (Fe(0)) combined with different adsorbents as hybrid systems for simultaneous removal of nitrate (NO(3)(-)) and ammonium (NH(4)(+)) ions from aqueous solution. The maximum NO(3)(-) removal in combined Fe(0)-granular activated carbon (GAC), Fe(0)-filtralite and Fe(0)-sepiolite systems was 86, 96 and 99%, respectively, at 45 °C for 24 h reaction time. The NO(3)(-) removal rate increased with the increase in initial NO(3)(-) concentration. The NO(3)(-) removal efficiency by hybrid systems was in the order of sepiolite > filtralite > GAC. The NH(4)(+) produced during the denitrification process by Fe(0) was successfully removed by the adsorbents, with the removal efficiency in the order of GAC > sepiolite > filtralite. Results of the present study suggest that the use of a hybrid system could be a promising technology for achieving simultaneous removal of NO(3)(-) and NH(4)(+) ions from aqueous solution.  相似文献   

7.
Two effluent samples were collected from an acid bath of a metal engraving industry. Sample A was lime-treated to pH 6 and sample B, pH 9. Zn concentrations in samples A and B were 1207 and 4.24 mg L-1, respectively. Both samples A and B caused 100% inhibition on millet seed germination. Sample A was more toxic than B. The 60% concentration of sample A caused 96% inhibition, whereas the 60% concentration of sample B caused 60% inhibition. The toxicity of sample B was not likely due to the presence of cyanide and zinc ions. The results of using various adsorbents and resins for the effluent treatment showed that only powdered activated carbon was partially effective in toxicity removal. By a combination of treatment methods, including using sodium hydroxide precipitation and carbon column adsorption, toxicity removal was calculated to be 29%.  相似文献   

8.
Modelling of the removal of synthetic dyes from aqueous solutions by adsorbents is important to develop an appropriate treatment plan using adsorption process. This paper presents a computational fluid dynamic model incorporating the Langmuir isotherm scheme and second-order kinetic expression to describe the adsorption process. The governing equation of the model was numerically solved using PHOENICS software to simulate synthetic dyes adsorption from the aqueous system. The experimental results presented in this study and taken from the literature for the removal of synthetic dyes were compared with those results predicted by the numerical model. The predicted outputs of the model match the experimental measurements satisfactory. A sensitivity analysis of the major parameters that influence the percent of dye removal from solution phase has been carried out. Three of the main parameters taken into account were the kinetic rate constant, amount of dye adsorbed at equilibrium and the Langmuir isotherm constant. It was found that the model is most sensitive to the amount of dye adsorbed at equilibrium. This effect is most obvious at the early stages of the adsorption process when the rate of dye removal is very fast. Quantification of the reaction mechanism allows developing an appropriate remediation strategy based on the adsorption process.  相似文献   

9.
以牛骨为原料,氯化锌为活化剂制备牛骨基炭,通过静态吸附试验研究了牛骨炭对水中Hg(Ⅱ)的吸附效果并确定了影响吸附性能的因素。研究结果表明:牛骨炭对Hg(Ⅱ)的最佳吸附时间约为2h、吸附温度为25℃、pH值为1、投加量为0.1g、吸附溶液的最大初始浓度为600mg/L,其最大吸附容量Q^0为43.1mg/g,吸附行为符合Freundl—ich吸附等温模型;通过BET分析和扫描电镜(SEM)等手段表征了牛骨炭的孔结构参数及形貌特征,经分析,所制备牛骨炭的孔径分布为中孔。  相似文献   

10.
The waste slurry generated in fertilizer plants in India has been converted into a cheap carbonaceous adsorbent material. The prepared adsorbent has been characterised and used for the removal of lead and chromium metals. The kinetics of adsorption and the extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbate, adsorbent and experimental system. Results of laboratory scale studies conducted to delineate the effect of such parameters on the kinetics of adsorption of metal ions are reported. Parameters evaluated include: hydronium ion concentration, temperature, initial adsorbate concentration, size of adsorbent, and amount of adsorbent. On the basis of these studies the various physical parameters such as effective diffusion coefficient, activation energies and entropy of activation are evaluated, as these provide some information regarding the mechanistic aspects. Mass transfer coefficient values suggest a rapid transport of the adsorbate from bulk to solid phase.  相似文献   

11.
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35–99.68% and 24.15–99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH3–N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH3–N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.  相似文献   

12.
The present study evaluates the capacity of shrimp (Farfantepenaeus aztecus) head to remove toxic Ni(II) ions from aqueous solutions. Relevant parameters that could affect the biosorption process, such as shrimp head pretreatment, solution pH level, contact time and initial Ni(II) concentration, were studied in batch systems. An increase in Ni(II) biosorption capacity and a reduction in the time required to reach Ni(II) biosorption equilibrium was manifested by shrimp head biomass pretreated by boiling in 0.5 N NaOH for 15 min; this biomass was thereafter denominated APSH. The optimum biosorption level of Ni(II) ions onto APSH was observed at pH 7.0. Biosorption increased significantly with rising initial Ni(II) concentration. In terms of biosorption dynamics, the pseudo-second-order kinetic model described Ni(II) biosorption onto APSH best. The equilibrium data adequately fitted the Langmuir isotherm model within the studied Ni(II) ion concentration range. According to this isotherm model, the maximum Ni(II) biosorption capacity of APSH was 104.22 mg/g. Results indicate that APSH could be used as a low-cost, environmentally friendly, and promising biosorbent with high biosorption capacity to remove Ni(II) from aqueous solutions.  相似文献   

13.
The bagasse fly ash, obtained from the local sugar industry, has been used as an inexpensive and effective adsorbent for the removal of color from pulp and paper industry. Effect of various operating variables, viz., contact time, initial concentration, adsorbent dose and particle size on the removal of color has been studied and discussed. It is found that for optimum removal of color, contact time for adsorption equilibrium equals to 60 min., at dosage of 2 g/l of baggase fly ash. The material exhibits good removal capacity (86%) and follows both the Langmuir and the Freundlich models.  相似文献   

14.
The adsorption equilibrium time and effects of pH and concentration of 14C-labeled paraquat (1,1??-dimethyl-4,4??-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of 14C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 ?? g g???1 (clay) at 1 ?? g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of 14C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 ?? g g???1, respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 ?? g g???1, respectively. Results also suggested that paraquat sorption by soil is concentration dependent.  相似文献   

15.
Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production.  相似文献   

16.
高氟水沸石除氟的效果研究   总被引:2,自引:0,他引:2  
通过静态搅拌实验和恒温震荡实验,研究了接触时间、pH、温度及反复使用次数对沸石除氟效果的影响.结果表明,在适宜的条件下,沸石除氟效果随着使用次数的增多有上升趋势,除氟效果良好,适用于我国高氟水地区.  相似文献   

17.
Biosorption of Cu2+, Zn2+, and Cr6+ from aqueous solutions by leaf biomass of Jatropha curcas was investigated as a function of biomass concentration, initial metal ion concentration, contact time, and pH of the solution systematically. The aim of this study was to optimize biosorption process and find out a suitable kinetic model for the metal removal in single and multi-metal system. The experimental data were analyzed using two sorption kinetic models, viz., pseudo-first- and pseudo-second-order equations, to determine the best fit equation for the biosorption of metal ions Cu2+, Zn2+, and Cr6+ onto the leaf biomass of J. curcas in different metal systems. The experimental data fitted well the pseudo-second-order equation and provided the best correlation for the biosorption process. The findings of the present investigation revealed that J. curcas leaf biomass was an eco-friendly and cost-effective biosorbent for the removal of heavy metal ions from wastewater.  相似文献   

18.
Removing phenol from wastewater has become a major challenge of international concern. Phytoremediation is a novel and eco-friendly method and is attracting an increasing amount of attention for treating phenol in wastewater. We studied the ability of Polygonum orientale, which is frequently present around water bodies and in wetlands in China, to phytoremediate phenol. We determined the inhibition concentration for phenol on P. orientale using emergency toxicology experiments and morphological observations. Isothermal and kinetic models were created to assess the adsorption process involved in phenol removal. Comparison tests in sterile conditions demonstrated that metabolic removal was the main way in which the phenol concentrations were decreased, and removal by adsorption played a smaller role. An orthogonal test was performed to determine the optimum conditions under which P. orientale will remove phenol, and these were found to be an initial phenol concentration of 5 mg L?1, 100 % natural light, and a 13-day treatment time. These results provide a theoretical basis for increasing our understanding of the mechanisms involved in the removal of phenol by P. orientale and will help in developing its application in the greening of urban areas to provide both phytoremediation and esthetic landscaping.  相似文献   

19.
聚合硫酸铁处理终端焦化废水的研究   总被引:2,自引:0,他引:2  
确定了聚合硫酸铁处理终端焦化废水的最佳投药量和 p H值 ,讨论了影响其混凝效果的主要因素。实验结果表明 ,处理后出水 COD、浊度的去除率达 80 %以上 ,对酚、氰的去除率可达到 40 %、5 0 %。  相似文献   

20.
Removal of nutrients like nitrogen and phosphorus from wastewater can be accomplished by precipitating these as the mineral struvite (NH4MgPO4. 6H2O). Predicting struvite precipitation potential, yield, and purity is important for designers and operators of reactors for struvite precipitation. In this paper, a mathematical model of this precipitation process is developed using physicochemical equilibrium expressions, mass balance equations for nitrogen, phosphorous and magnesium, and charge balance. The model was simulated to explicitly solve for equilibrium concentrations of eighteen species that included dissolved (three), ionic (ten), and solid (five) species for a given set of initial concentrations of ammonium–nitrogen, magnesium and phosphate–phosphorus, and pH. The model simulations were validated against literature experimental data, which used synthetic as well as actual wastewater, and data from our experiments. The model satisfactorily predicted most data. Struvite fraction in the precipitate ranged from 27% to 100%. The purity of struvite in the precipitate and the pH that maximizes struvite fraction was dependent on the initial concentrations of ammonium, magnesium, and phosphate. Optimum pH and struvite fraction was, respectively, 8.5 and 29.3% for an equimolar mixture of ammonia, magnesium, and phosphate and 9.8 and 98.3% for 10:1.7:3.4 mM ratio. Struvite fraction in the precipitate increased as magnesium became limiting or as ammonia to phosphate ratio increased and magnesium to phosphate ratio decreased. Since the struvite component is only a fraction of the total solids, it is erroneous to report the total precipitate produced as being struvite as is conventionally done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号