首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The relative abundance of small mammals in five forest land cover types on the upper Coastal Plain of north Mississippi was determined. Burrowing mammals accounted for one-half of the total captures; one shrew species that accounted for over one-fourth of the total captures had a strong affinity for well-stocked pine plantations. The opportunity for detention and retention of rainfall was enhanced by burrowing activity. Reductions of stormflow volumes 12 to 15 years after replacing poor quality, upland hardwoods with loblolly pine were only partially explained by increased interception of rainfall; much of the residual reductions are postulated to be due to small mammal burrows. Small mammal activity deserves further study as an important aspect of forest land hydrology.  相似文献   

2.
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain.  相似文献   

3.
The Pacific Northwest encompasses a range of hydrologic regimes that can be broadly characterized as either coastal (where rain and rain on snow are dominant) or interior (where snowmelt is dominant). Forest harvesting generally increases the fraction of precipitation that is available to become streamflow, increases rates of snowmelt, and modifies the runoff pathways by which water flows to the stream channel. Harvesting may potentially decrease the magnitude of hyporheic exchange flow through increases in fine sediment and clogging of bed materials and through changes in channel morphology, although the ecological consequences of these changes are unclear. In small headwater catchments, forest harvesting generally increases annual runoff and peak flows and reduces the severity of low flows, but exceptions have been observed for each effect. Low flows appear to be more sensitive to transpiration from vegetation in the riparian zone than in the rest of the catchment. Although it appears that harvesting increased only the more frequent, geomorphically benign peak flows in several studies, in others the treatment effect increased with return period. Recovery to pre‐harvest conditions appeared to occur within about 10 to 20 years in some coastal catchments but may take many decades in mountainous, snow dominated catchments.  相似文献   

4.
This paper reviews suspended sediment sources and transport in small forest streams in the Pacific Northwest region of North America, particularly in relation to riparian management. Mass movements, reading and yarding practices, and burning can increase the supply of suspended sediment. Sediment yields recovered to pre‐harvest levels within one to six years in several paired catchment studies. However, delayed mass movements related to roads and harvesting may produce elevated suspended sediment yield one or more decades after logging. There is mixed evidence for the role of streamside tree throw in riparian buffers in supplying sediment to streams. Harvesting within the riparian zone may not increase suspended sediment yield if near stream soils are not disturbed. Key knowledge gaps relate to the relative roles of increased transport capacity versus sediment supply, the dynamics of fine sediment penetration into bed sediments, and the effects of forest harvesting on suspended sediment at different scales. Future research should involve nested catchments to examine suspended sediment response to forest practices at multiple spatial scales, in combination with process‐based field studies.  相似文献   

5.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   

6.
ABSTRACT: Variation of in situ measured saturated hydraulic conductivity (KS) with stand age was examined in drained and intensively managed loblolly pine (Pinus taeda L.) plantations on very poorly drained Bayboro loam soils. Stand ages studied were 1-year-old and 14-years old. No differences in Ks values were found between the stand ages. In addition, no differences in core measured soil properties were found between the stand ages, indicating that there were no differences in the pore structure of the soil matrix. There was large variation of Ks within stands and between stands within ages. The mean within stand Ks values ranged from 0.66 cm/hr to 4.85 cm/hr. The frequency of tests exhibiting pipe flow through large non-capillary voids was significantly greater in the older stands; however, the continuity of the voids in the soil, and whether or not non-Darcy type flow would occur in a saturated profile, could not be determined.  相似文献   

7.
Long-term depletion of calcium and other nutrients in eastern US forests   总被引:10,自引:0,他引:10  
Both harvest removal and leaching losses can deplete nutrient capital in forests, but their combined long-term effects have not been assessed previously. We estimated changes in total soil and biomass N, Ca, K, Mg, and P over 120 years from published data for a spruce-fir site in Maine, two northern hardwood sites in New Hampshire, central hardwood sites in Connecticut and Tennessee, and a loblolly pine site in Tennessee. For N, atmospheric inputs counterbalance the outputs, and there is little long-term change on most sites. For K, Mg, and P, the total pool may decrease by 2%–10% in 120 years depending on site and harvest intensity. For Ca, net leaching loss is 4–16 kg/ha/yr in mature forests, and whole-tree harvest removes 200–1100 kg/ha. Such leaching loss and harvest removal could reduce total soil and biomass Ca by 20%–60% in only 120 years. We estimated unmeasured Ca inputs from rock breakdown, root-zone deepening, and dry deposition; these should not be expected to make up the Ca deficit. Acid precipitation may be the cause of current high leaching of Ca. Although Ca deficiency does not generally occur now in acid forest soils, it seems likely if anthropogenic leaching and intensive harvest removal continue.  相似文献   

8.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

9.
ABSTRACT: Sulfometuron methyl [methyl 2-[[[[4,6-dimethly 2-(pyrimidinyl) a-mino] carbony l]amino] sulfonyl] benzoate] was applied by a ground sprayer at a maximum labeled rate of 0.42 kg ha-1 a.i. to a 4 ha Coastal Plain flatwoods watershed as site preparation for tree planting. Herbicide residues were detected in Streamflow for only seven days after treatment and did not exceed 7 mg m-3. Sulfometuron methyl was not detected in any stormflow and was not found in any sediment (both bedload and suspended). Sampling of a shallow ground water aquifer, > 1.5 m below ground surface, did not detect any sulfometuron methyl residues for 203 days after herbicide application. Lack of herbicide residue movement was attributed to low application rates, rapid hydrolysis in acidic soils and water and dilution in streamflow.  相似文献   

10.
Timber was harvested on South Fork of Thomas Creek, White Mountains of Arizona, USA, for the first time in 1978–1979. This caused significant increases in annual flow volumes and annual instantaneous peak flows. North Fork remained untouched, but both streams were in disequilibrium before harvest time. Due to wetter years during the postharvest period, North Fork also experienced some flow increases, but the difference was not significant. Flow increases cause increased erosion in disequilibrium channels. While in South Fork channel cross sections enlarged by 10% since preharvest time, those in North Fork enlarged by only 2.5%. The number of knickpoints tripled in South Fork, which was about double that in North Fork. Knickpoint development resulted in destruction of the natural control structures (log steps and transverse gravel bars) in South Fork (47%), while in North Fork they increased by 23%. Knickpoints are scarps on the channel bed that have the appearance of gully headcuts. The tripling of the number of knickpoints signifies that adjustment processes of the bed profile are intensified drastically in South Fork. The geomorphic changes signify that due to increases in discharge, the extent of disequilibrium is exacerbated in South Fork. Yet, volumes of erosion are relatively small, as will be sediment volumes leaving the watershed at a given time, because of the stepwise sediment transport occurring in this ephemeral stream.  相似文献   

11.
Throughfall was measured during 1978–79 beneath the canopies of adjacent stands of four major southern pine species, all on identical soil type and topography in the Stephen F. Austin Experimental Forest. Observations from 44 storms in a randomized network of 15, 5.08 cm PVC gages in a 0.4 ha plot of each species showed that throughfall expressed as percent of storm precipitation, is greatest under longleaf pine and least under loblolly pine; throughfall under shortleaf and slash pine did not differ significantly. Generally, through-fall decreased with storm size and intensity, with distance from the nearest tree stem, and is greater during summer half-year (May–October). Canopy drips, apparently accounting for the greater throughfall for the gage position closer to the stems, were more numerous than reported elsewhere. The 5.08 cm PVC gages proved to be acceptable substitutes for standard nonrecording gages in measuring throughfall. A network of 15 such gages was sufficient to sample throughfall data with 90 percent accuracy in each of the four southern pine plantations.  相似文献   

12.
Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.  相似文献   

13.
The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export.  相似文献   

14.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

15.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

16.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

17.
Regional curves are empirical relationships that can help identify the bankfull stage in ungaged watersheds and aid in designing the riffle dimension in stream restoration projects. Bankfull regional curves were developed from gage stations with drainage areas less than 102 mi2 (264.2 km2) for the Alleghany Plateau/Valley and Ridge (AP/VR), Piedmont, and Coastal Plain regions of Maryland. The AP/VR regions were combined into one region for this project. These curves relate bankfull discharge, cross‐sectional area, width, and mean depth to drainage area within the same hydro‐physiographic region (region with similar rainfall/runoff relationship). The bankfull discharge curve for the Coastal Plain region was further subdivided into the Western Coastal Plain (WCP) and Eastern Coastal Plain (ECP) region due to differences in topography and runoff. Results show that the Maryland Piedmont yields the highest bankfull discharge rate per unit drainage area, followed by the AP/VR, WCP, and ECP. Likewise, the Coastal Plain and AP/VR streams have less bankfull cross‐sectional area per unit drainage area than the Piedmont. The average bankfull discharge return interval across the three hydro‐physiographic regions was 1.4 years. The Maryland regional curves were compared to other curves in the eastern United States. The average bankfull discharge return interval for the other studies ranged from 1.1 to 1.8 years.  相似文献   

18.
Managed forests are a primary land use within the Coastal Plain of the southern United States. These forests are generally managed under standards, guidelines, or regulations to conserve ecosystem functions and services. Economic value of commercial forests provides incentives for landowners to maintain forests rather than convert them to other uses that have substantially reduced environmental benefits. In this review, we describe the historical context of commercial forest management in the southern United States Coastal Plain, describe how working forests are managed today, and examine relationships between commercial forest management and maintenance of functional aquatic and wetland systems and conservation of biological diversity. Significant challenges for the region include increasing human population and urbanization and concomitant changes in forest area and structure, invasive species, and increased interest in forest biomass as an energy feedstock. Research needs include better information about management of rare species and communities and quantification of relationships between ecosystem attributes and forest management, including biomass production and harvest. Incentives and better information may help commercial forest managers in the Coastal Plain more efficiently contribute to landscape-scale conservation goals.  相似文献   

19.
Summary The paper discusses the tin mining industry in Malaysia and legislations promulgated to prevent environmental degradation due to mining activities. Soil erosion and sediment contribution from mining areas were studied by examining inflow and outflow sediment loads and stormflow sediment transport characteristics at two sediment sampling stations in the Kelang River Basin. It was observed that despite the cessation of mining activities, rivers draining mining areas still carry high sediment loads. It was found that sediment yield increases by three to six times after the river passes through mining land. Low-flow sediment transport is more significant in the mining area compared to non-mining areas. Clockwise hytheretical loops observed at the two sampling stations indicate that sediment sources are located near the river and within the channel system itself.Mr G. Balamurugan was until recently a member of staff at the Institute for Advanced Studies at the University of Malaya. He is now a practising water resources engineer, and may be contacted at HSS Integrated, 20–24, Jalan SS 21/62, Damansara Utama, 47400 Petaling Jaya, Selangor, Malaysia.  相似文献   

20.
ABSTRACT: Hydrologic records from six small Eastern Kentucky watersheds were analyzed to determine the effect of surface mining on storm flows and peak flows. Average storm flow volumes were not changed by surface mining, whereas average peak flows were increased 36 percent. Peak flow increases were only in the summer. Smaller peak flows are doubled; moderate ones are increased by about a third; peak flows around 100 csm seem to be largely unaffected; and the larger peak flows may have been reduced by surface mining. The maximum annual storm flows, usually in winter or spring, appeared slightly reduced. No time trend in either storm flows or peak flows could be detected in five years of postmining record. Surface mining is not a serious floodwater discharge problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号