首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Western Washington and western Oregon comprise a water-rich region that has a very uneven annual distribution of both precipitation and streamflow. Highest demand for water coincides with lowest streamflow levels between July 1 and September 30 when less than 5 percent of annual water yield occurs. Increases in annual water yield in small, experimental watersheds in the region have ranged up to 600 mm after entire watersheds were logged and up to 300 mm in watersheds that were 25 to 30 percent logged. Most of the increase has occurred during the fall-winter rainy season, and yield increases have been largest during the wettest years. Estimated sustained increases in water yield from most large watersheds subject to sustained yield forest management are at best only 3-6 percent of unaugmented flows. Realistically, watersheds in this region will not be managed to produce more water. Water yield augmentation will continue to be only a small and variable by-product of logging. The utility of water yield augmentation is limited by its size and by its occurrence relative to the time of water demand. In some local areas, reduction of fog interception and drip or establishment of riparian phreatophytic hardwoods may reduce summer flows.  相似文献   

2.
ABSTRACT: As part of a study of Redwood National Park in north-western California, an investigation was conducted from June to November 1974 on intragravel dissolved oxygen and sediment in three tributaries to Redwood Creek, a major coastal stream that flows through Redwood National Park. Of concern was whether the intragravel environment of streams in logged and unlogged redwood-forested drainage basins was different. The tributary in the unlogged drainage basin had lower percentages of fine streambed sediment than either of the tributaries in logged drainage basins. Concentration and percentage saturation of dissolved oxygen of intragravel water were highest in the stream in the unlogged drainage basin, intermediate in the stream in the patch-cut drainage basin, and lowest in the stream in the clear-cut drainage basin. The differences in intragravel dissolved-oxygen conditions among the three tributaries are attributed chiefly to differences in their interchange of surface and intragravel water. The larger quantities of fine streambed sediment in the two streams in logged basins may have reduced the permeability of the streambeds and hence their capacity to interchange surface and intragravel water. However, differences in the lithology of the three tributary drainage basins examined may contribute to the differences in the percentage of fine sediments observed among the streams, even in the absence of logging.  相似文献   

3.
ABSTRACT: Autochthonous energy input, in the form of periphyton production and growth, was studied before and after partial logging of the watershed surrounding School Brook, a small tributary of the Aroostook River, Maine. Due to infection by the spruce budworm (Chiristoneura fumiferana), the buffer strip on one bank of the stream was logged and only limited riparian vegetation was left. Though impacts in subsequent years are unknown, the effect of the logging on the periphyton community was insignificant during the nine months following cutting, seemingly due to several factors. Because only 5 percent of the canopy was actually removed, the intensity of available light changed little. Small springs in the area helped maintain a stable thermal regime, and only a small portion of the low gradient watershed was actually logged. Consequently, the nutrients reaching the stream did not change. The relatively low concentrations of nitrates (< 0.3 mg/l) and phosphates (< 10 μg/l), both before and in the first nine months after logging, reflect the limited autochthonous input, thereby reducing the effect of this limited cutting on the stream community.  相似文献   

4.
Analysis of recent streamflow data from the Fox Creek Experimental Watersheds in the Bull Run Municipal Watershed, Oregon, indicates a significant recovery from the impacts on summer water yield due to a loss of fog drip upon timber harvesting. Measurable impacts and their associated recovery are notable only during the months of June and July. Recovery begins about five or six years following harvest, possibly due to renewed fog drip from prolific revegetation. Watershed positioning with respect to prevailing weather systems and the extent of burning or removal of slash and residual vegetation during logging appear to be important factors in predicting the impact of fog drip reduction associated with planned harvest. Apparently, once the temporary reduction in summer yield is offset by renewed fog drip, the expected increase in yield due to decreased evapotranspiration can be observed. Redistribution of fog drip may be a major factor in the measurements of local interception and water yield.  相似文献   

5.
Streamside vegetation frequently regenerates faster than upland vegetation following wildland fire and contributes to the recovery of riparian and stream ecosystems. Limited data are available, however, on the post‐fire growth of riparian species and the influence of herbivory on regeneration. To determine post‐fire regrowth of riparian vegetation, height, crown area, crown volume, and browse levels were measured for key riparian shrub species in streamside burned and unburned plots along second‐order streams in western Wyoming. Shrubs in the burned plots were subject to high levels of browse ‐ up to 84 percent of the leaders were browsed ‐ by native ungulates in 2002, the second post‐fire year (September 2001 to September 2002). In summer 2003, the burned watershed was also grazed by livestock, resulting in increased browse levels and decreased shrub heights for several species. In the third post‐fire year, September 2002 to September 2003, four of the six most common species showed no increase in crown area or crown volume, indicating that the combination of native ungulate and cattle browsing suppressed their growth. Potential impacts of grazing on post‐fire recovery of stream and riparian ecosystems are discussed.  相似文献   

6.
ABSTRACT: Road building, clearcutting 25 percent of the watershed, and slash disposal by broadcast burning or by natural decomposition caused changes in water quality of two small streams in the Bull Run Watershed in Oregon, which supplies water to the Portland, Oregon, metropolitan area. Concentrations of suspended sediment increased slightly, primarily owing to construction of a permanent logging road that crossed streams. Changes in nutrient cycling occurred due to logging and slash disposal in both watersheds where cutting was done. NO3-N concentrations, which increased most where logging residue was left to decompose naturally, increased more than sixfold and commonly exceeded 100 pg/i during the October-June high-flow season for seven years after logging. Where logging slash was broadcast burned, NO3-N concentrations increased roughly fourfold, but rarely exceeded 50 μg/l, and increases had mostly disappeared six years after slash burning. Changes in outflows of cations and other anions were not apparent. Annual maximum stream temperatures increased 2–3°C after logging, but temperature increases had mostly disappeared within three years as vegetation regrowth shaded the streams.  相似文献   

7.
ABSTRACT: We evaluated changes in channel habitat distributions, particle‐size distributions of bed material, and stream temperatures in a total of 15 first‐or second‐order streams within and nearby four planned commercial timber harvest units prior to and following timber harvest. Four of the 15 stream basins were not harvested, and these streams served as references. Three streams were cut with unthinned riparian buffers; one was cut with a partial buffer; one was cut with a buffer of non‐merchantable trees; and the remaining six basins were clearcut to the channel edge. In the clearcut streams, logging debris covered or buried 98 percent of the channel length to an average depth of 0.94 meters. The slash trapped fine sediment in the channel by inhibiting fluvial transport, and the average percentage of fines increased from 12 percent to 44 percent. The trees along buffered streams served as a fence to keep out logging debris during the first summer following timber harvest. Particle size distributions and habitat distributions in the buffered and reference streams were largely unchanged from the pre‐harvest to post‐harvest surveys. The debris that buried the clearcut streams effectively shaded most of these streams and protected them from temperature increases. These surveys have documented immediate channel changes due to timber harvest, but channel conditions will evolve over time as the slash decays and becomes redistributed and as new vegetation develops on the channel margins.  相似文献   

8.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

9.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

10.
Clark, Gregory M., 2010. Changes in Patterns of Streamflow From Unregulated Watersheds in Idaho, Western Wyoming, and Northern Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):486-497. DOI: 10.1111/j.1752-1688.2009.00416.x Abstract: Recent studies have identified a pattern of earlier spring runoff across much of North America. Earlier spring runoff potentially poses numerous problems, including increased risk of flooding and reduced summer water supply for irrigation, power generation, and migratory fish passage. To identify changing runoff patterns in Idaho streams, streamflow records were analyzed for 26 U.S. Geological Survey gaging stations in Idaho, western Wyoming, and northern Nevada, each with a minimum of 41 years of record. The 26 stations are located on 23 unregulated and relatively pristine streams that drain areas ranging from 28 to >35,000 km2. Four runoff parameters were trend tested at each station for both the period of historical record and from 1967 through 2007. Parameters tested were annual mean streamflow, annual minimum daily streamflow, and the dates of the 25th and 50th percentiles of the annual total streamflow. Results of a nonparametric Mann-Kendall trend test revealed a trend toward lower annual mean and annual minimum streamflows at a majority of the stations, as well as a trend toward earlier snowmelt runoff. Significant downward trends over the period of historical record were most prevalent for the annual minimum streamflow (12 stations) and the 50th percentile of streamflow (11 stations). At most stations, trends were more pronounced during the period from 1967 through 2007. A regional Kendall test for water years 1967 through 2007 revealed significant regional trends in the percent change in the annual mean and annual minimum streamflows (0.67% less per year and 0.62% less per year, respectively), the 25th percentile of streamflow (12.3 days earlier), and the 50th percentile of streamflow (11.5 days earlier).  相似文献   

11.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

12.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   

13.
ABSTRACT: After 25 years of operation on ephemeral streams in the semiarid Southwest, this supercritical flume has provided more than 350 station-years of reliable streamflow data, even under freezethaw conditions experienced at elevations of 1,500 to 2,100 m, in Arizona. The flume has also provided streamflow data during flood periods produced by high intensity summer thunderstorm conditions, where considerable sediment and other debris was moved downstream.  相似文献   

14.
ABSTRACT Tree-ring indices representing seven sites were used to reconstruct monthly summer streamflow in the Occoquan River basin of northern Virginia from 1841 to 1975. Attempts were made to reconstruct flow for each of the months, April through August. Reconstructions for June, July, and August were judged most reliable. Major mid-summer flow minima persisting for more than one year were reconstructed as having occurred in the early 1870's, the early 1930's, and the mid-1960's. Aside from these major dry periods, a greater frequency of extreme low flow during individual years is indicated for the entire record than for the most recent 50 years.  相似文献   

15.
ABSTRACT: A set of procedures for identifying changes in selected streamflow characteristics at sites having long‐term continuous streamflow records is illustrated by using streamflow data from the Waccamaw River at Freeland, North Carolina for the 55‐year period of 1940–1994. Data were evaluated and compared to streamflow in the adjacent Lumber River Basin to determine if changes in streamflow characteristics in the Waccamaw River were localized and possibly the result of some human activity, or consistent with regional variations. Following 1963, droughts in the Waccamaw Basin seem to have been less severe than in the Lumber Basin, and the annual one‐, seven‐, and 30‐day low flows exhibited a slightly increasing trend in the Waccamaw River. Mean daily flows in the Waccamaw River at the 90 percent exceedance level (low flows) during 1985–194, a relatively dry period, were very nearly equal to flows at the same exceedance level for 1970–1979, which represents the 10‐year period between 1940 and 1994 with the highest flows. Prior to the 1980s, flows per unit drainage area in the Waccamaw Basin were generally less than those in the Lumber Basin, but after 1980, the opposite was true. The ratio of base flow to runoff in the Waccamaw River may have changed relative to that in the Lumber River in the late 1970s. There was greater variability in Waccamaw River streamflow than in Lumber River flow, and flow variability in the Waccamaw River may have increased slightly during 1985–1994.  相似文献   

16.
ABSTRACT: This study evaluates the streamflow characteristics of the upper Allegheny River during the periods preceding (1936 to 1965) and following (1966 to 1997) completion of the Kinzua Dam in northwestern Pennsylvania. Inter‐period trends in seasonal patterns of discharge and peak flow at three downstream sites are compared to those at two upstream sites to determine the influence of this large dam on surface water hydrology. Climatic records indicate that significant changes in annual total and seasonal precipitation occurred over the twentieth century. Increased runoff during the late summer through early winter led to increased discharge both upstream and downstream during these months, while slightly less early‐year rainfall produced minor reductions in spring flood peaks since 1966. The Kinzua Dam significantly enhanced these trends downstream, creating large reductions in peak flow, while greatly augmenting low flow during the growing season. This reduction in streamflow variability, coupled with other dam‐induced changes, has important biodiversity implications. The downstream riparian zone contains numerous threatened/endangered species, many of which are sensitive to the type of habitat modifications produced by the dam. Flood dynamics under the current post‐dam conditions are likely to compound the difficulties of maintaining their long‐term viability.  相似文献   

17.
ABSTRACT: Experimental cuttings on two small, hardwood-forested watersheds in New England showed that annual streamflow can be increased as much as 41 percent. Most of the increase occurred in summer and early autumn when additional streamflow is most needed. Revegetation caused the annual increases to nearly disappear within 4 years after complete forest clearing.  相似文献   

18.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

19.
ABSTRACT: In Virginia, as in many states, priority to streamflow is held by riparian landowners who are predominantly agricultural users. The streamfiow may also have a high potential value to non-agricultural users who do not have riparian rights. The potential benefits of transferring streamfiow priority rights from agricultural to non-agricultural use were evaluated using simulation for an eastern Virginia watershed. Lowering irrigators' priority to streamflow reduced crop yields and irrigated returns in some years because of inadequate water supplies. However, the transfer of priorities increased the likelihood that the urban reservoir would be able to withdraw water from the stream without interruption. As a result, priority trades reduced the size of reservoir needed to meet a given water requirement by municipal users. The resulting savings in reservoir construction and maintenance costs more than offset the losses to irrigators. Net savings could be achieved even if the reservoir were required to release water periodically to maintain a minimum level of instream flow. The conclusion is that the state should encourage trading of access to streamflow in order to increase the use efficiency of streamfiows. Alternative means by which the state can facilitate water exchanges are discussed.  相似文献   

20.
ABSTRACT: Wildfires in 1988 burned over 2000 square miles of the greater Yellowstone area in Montana and Wyoming in the largest fires in the history of Yellowstone National Park (YNP). A four-year postfire study to estimate fire-related changes in suspended sediment transport on the Yellowstone River and its principal tributary in YNP, the Lamar River, benefitted from a recently completed three-year prefire baseline study. Both studies took daily depth-integrated samples from April through September. Fire-related changes in suspended sediment were distinguished from natural climatic variations by two methods: comparison of forecast postfire sediment loads estimated with prefire sediment-rating equations to measured postfire loads; and by postfire changes in suspended sediment load expressed per unit volume runoff. Both methods indicated postfire sediment increases that varied according to season. The higher elevation Lamar River basin had little postfire increase in spring snowmelt season sediment but large increases in summer sediment load. The Yellowstone River had postfire increases in sediment load for the spring but did not reflect the large summer increases of its upstream tributary. The reasons for the difference in postfire snowmelt sediment response are unclear but may relate to basin elevation differences, the effects of unburned watersheds, and cooler postfire springs. The few high streamflow snowmelt events in the postfire period mitigated postfire sediment increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号