共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Dennis Harr 《Journal of the American Water Resources Association》1983,19(3):383-393
Western Washington and western Oregon comprise a water-rich region that has a very uneven annual distribution of both precipitation and streamflow. Highest demand for water coincides with lowest streamflow levels between July 1 and September 30 when less than 5 percent of annual water yield occurs. Increases in annual water yield in small, experimental watersheds in the region have ranged up to 600 mm after entire watersheds were logged and up to 300 mm in watersheds that were 25 to 30 percent logged. Most of the increase has occurred during the fall-winter rainy season, and yield increases have been largest during the wettest years. Estimated sustained increases in water yield from most large watersheds subject to sustained yield forest management are at best only 3-6 percent of unaugmented flows. Realistically, watersheds in this region will not be managed to produce more water. Water yield augmentation will continue to be only a small and variable by-product of logging. The utility of water yield augmentation is limited by its size and by its occurrence relative to the time of water demand. In some local areas, reduction of fog interception and drip or establishment of riparian phreatophytic hardwoods may reduce summer flows. 相似文献
2.
Alex Pupacko 《Journal of the American Water Resources Association》1993,29(2):283-290
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends. 相似文献
3.
Bruce Anderson Donald F. Potts 《Journal of the American Water Resources Association》1987,23(4):681-690
ABSTRACT: Forest management activities in a second order drainage basin increased suspended sediment yields 7.7 fold in the first year following road construction, and two-fold following logging in the second year. Sediment supply limitations resulted in poor correlations between sediment concentrations with discharge. Sediment transport was strongly hysteretic, with the highest sediment concentrations occurring on the rising limbs of snowmelt hydrographs and individual peaks. In addition to discharge, hydrograph characteristics such as limb, dQ/dt, and the product of dQ/dt and limb aided in explaining variability of observed sediment concentrations. Sediment-turbidity relationships were strongly discharge dependent, reflecting the changing composition of the suspended load with stream power and sediment supplies. 相似文献
4.
Beverley C. Wemple Julia A. Jones Gordon E. Grant 《Journal of the American Water Resources Association》1996,32(6):1195-1207
ABSTRACT: Based on field surveys and analysis of road networks using a geographic information system (GIS), we assessed the hydrologic integration of an extensive logging-road network with the stream network in two adjacent 62 and 119 km2 basins in the western Cascades of Oregon. Detailed surveys of road drainage for 20 percent of the 350 km road network revealed two hydrologic flow paths that link roads to stream channels: roadside ditches draining to streams (35 percent of the 436 culverts examined), and roadside ditches draining to culverts with gullies incised below their outlets (23 percent of culverts). Gully incision is significantly more likely below culverts on steep (< 40 percent) slopes with longer than average contributing ditch length. Fifty-seven percent of the surveyed road length is connected to the stream network by these surface flowpaths, increasing drainage density by 21 to 50 percent, depending on which road segments are assumed to be connected to streams. We propose a conceptual model to describe the hydrologic function of roads based on two effects: (1) a volumetric effect, increasing the volume of water available for quickflow and (2) a timing effect, altering flow-routing efficiency through extensions to the drainage network. This study examines the second of these two effects. Future work must quantify discharge along road segments connected to the stream network in order to more fully explain road impacts on basin hydrology. 相似文献
5.
Thomas C. Brown Benjamin L. Harding William B. Lord 《Journal of the American Water Resources Association》1988,24(4):801-814
ABSTRACT: This study examined the disposition of streamflow increases that could be created by vegetation management on forest land along the upper reaches of the Colorado River. A network optimization model was used to simulate water flow, storage, consumptive use, and loss within the entire Colorado River Basin with and without the flow increases, according to various scenarios incorporating both current and future consumptive use levels as well as existing and potential institutional constraints. Results indicate that very little of the flow increases would be consumptively used at current use levels, or even at future use levels, if water allocation institutions remain unchanged. Given future use levels and economically based water allocation institutions, up to one-half of the flow increases could be consumptively used. The timing of streamflow increases, and the institutional constraints on water allocation, often limit the potential for consumptive use of flow increases. 相似文献
6.
K C. Gan T A. McMahon I. C. O'Neill 《Journal of the American Water Resources Association》1990,26(3):443-450
ABSTRACT: For a set of 81 catchments in southeast Victoria, Australia, predictive equations were developed by least squares regression of the mean and coefficient of variation of annual Streamflow against a variety of rainfall and physiographic parameters. The data were also divided into subsets according to catchment size, subregion, or record length of investigate if the relationships differed significantly between subsets. Only the catchment area and some rainfall statistical parameters were found to be significant. Streamflow parameters predicted by the regression equations were used to estimate storage requirements in ungauged catchments. The influence of errors in the Streamflow parameters on the storage error was examined. 相似文献
7.
R. Lynn Taylor Paul W. Adams 《Journal of the American Water Resources Association》1986,22(4):629-635
ABSTRACT: Streamside red alder (Alnus rubra Bong.) stands are common in western Oregon, and they have been suspected of causing water quality problems in domestic supplies during autumn leaf fall. Studies in the Seaside municipal watershed showed potential water quality effects (particularly increased color) from alder leaves, but stream sampling during 1981–82 revealed no chronic problems. The few observed short-term increases in water color occurred near the onset of storm flows, which suggested a flushing of organic matter storage sites. An extended period of unusually low flows and high leaf fall are probably necessary to produce significant water quality problems in this stream system. Laboratory leaching of alder leaves in filtered stream water indicated a fairly constant release of colored organic matter over time, and running water leached this matter more efficiently than still water. Water color increased linearly with increasing leaf mass added to still water, and for a given leaf mass there appeared to be a limit to the amount of colored matter that could be removed in the first 48 hours of leaching. Other laboratory tests showed that ultraviolet absorbance (254 mm) may provide a reasonable estimate of dissolved organic carbon concentrations in systems dominated by alder leaf inputs. 相似文献
8.
ABSTRACT: Erosion resulting from logging and road building has long been a concern to forest managers and the general public. An objective methodology was developed to estimate erosion risk on forest roads and in harvest areas on private land in northwestern California. It was based on 260 plots sampled from the area harvested under 415 Timber Harvest Plans completed between November 1978 and October 1979. Results confirmed previous findings that most erosion related to forest management occurs on a small fraction of the managed area. Erosion features larger than the minimum size inventories in this study (> 13 yd3) occupied only 0.2 percent of the area investigated. Linear discriminant analysis was used to develop two equations for identifying critical sites (sites with erosion >100 yd3ac?1). The equations were based on slope, horizontal curvature (an expression of local topography), and soil color (on road sites) or the strength of the underlying rocks (on harvest sites). The equations can be used in planning to estimate the erosion risk of proposed activities. They can also be used to estimate acceptable risk thresholds based on the value of competing resources. 相似文献
9.
Warren A. Gebert William R. Krug 《Journal of the American Water Resources Association》1996,32(4):733-744
ABSTRACT: Trends in streamflow characteristics were analyzed for streams in southwestern Wisconsin's Driftless Area by using data at selected gaging stations. The analyses indicate that annual low flows have increased significantly, whereas annual flood peaks have decreased. The same trends were not observed for forested areas of northern Wisconsin. Streamflow trends for other streams in southeastern Wisconsin draining predominantly agricultural land were similar to trends for Driftless Area streams for annual low flows. The causes for the trends are not well understood nor are the effects. Trends in annual precipitation do not explain the observed trends in streamflow. Other studies have found that erosion rates decreased significantly in the Driftless Area, and have attributed this reduction to a change of agricultural practices, which increase infiltration, decrease flood peaks, and increase low flows. 相似文献
10.
D. A. Higgins A. R. Tiedemann T. M. Quigley D. B. Marx 《Journal of the American Water Resources Association》1989,25(6):1131-1149
ABSTRACT: Streamflow data for water years 1978–84 were evaluated to identify streamflow characteristics for 13 small watersheds (0.46–7.00 mi2) in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. The ranges for mean annual water yields, peak flows, and 7-day low flows for the 13 watersheds were 5.5–28.1 inches, 2.0–34.7 cfsm, and 0.006–0.165 cfsm, respectively. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds) and (2) other (four watersheds representing fir-spruce, lodgepole pine, ponderosa pine, and mountain meadow). The means for annual peak flows and the slopes of the flow.duration curve were significantly different (p=0.05) for the two vegetation classes; differences in mean annual water yield were marginallysignificant(0.05< p <0.10). After they were adjusted for precipitation, the means for annual water yield, peak flows, and slopes of the flow-duration curve were significantly different for the two vegetation classes; differences in the means for annual 7-day low flows were marginally significant. The western larch-Douglas-fir group had somewhat lower water yields but, overall, tended to have more favorable streamfiow characteristics including lower peak flows, higher low flows, and more evenly distributed flow regimes (flatter flow-duration curves) than the “other” class. Four levels of grazing intensity had no effect on streamilow characteristics. 相似文献
11.
Thomas C. Brown Martin M. Fogel 《Journal of the American Water Resources Association》1987,23(6):1149-1160
ABSTRACT: Although the effects of vegetation management on streamflow have been studied in many locations, the effects of augmented streamflow on downstream water users have not been carefully analyzed. This study examines the routing of streamflow increases that could be produced in the Verde River Basin of Arizona. Reservoir management and water routing to users in the Salt River Valley around Phoenix were carefully modeled. Simulation of water routing with and without vegetation modification indicates that, under current institutional conditions, less than one-half of the streamflow increase would reach consumptive users as surface water. Most of the remainder would accumulate in storage until a year of unusually heavy runoff, when it would add to reservoir spills. Under alternative scenarios, from 39 to 58 percent of the streamflow increase was delivered to consumptive users. 相似文献
12.
Jeffrey J. Dose Brett B. Roper 《Journal of the American Water Resources Association》1994,30(6):993-1000
ABSTRACT: Recent stream survey data (1989–1993) from 31 stream segments of 21 streams within the upper South Umpqua Watershed Oregon were compared to 1937 stream survey data collected from these same stream segments. Current low-flow wetted stream widths of 22 of the 31 surveyed stream segments were significantly different than in 1937; 19 stream segments were significantly wider while the remaining three stream segments were significantly narrower. In only 1 of 8 tributaries to the South Umpqua River which had headwaters within land designated wilderness area did low-flow stream channel width increase since 1937. Conversely, 13 of the 14 tributaries to the South Umpqua River which originated from lands designated as timber emphasis were significantly wider than in 1937. The observed change in stream width was linearly related to timber harvest (r2= 0.44), road density (r2= 0.45), and the amount of large organic debris remaining within the active stream channel (r2= 0.43). These findings suggest that timber harvest and road construction may have resulted in changes in channel characteristics. These channel changes may also be a factor in the observed decline of three of the four populations of anadromous salmonids within the basin. 相似文献
13.
Keith W. Muckleston Richard M. Highsmith 《Journal of the American Water Resources Association》1978,14(5):1121-1128
ABSTRACT: As of 1976 over 225,000 acres were being irrigated by center pivot units in a five-county area of the Columbia Basin in Oregon and Washington. Most of the development took place since 1970. Dynamic application of center pivot technology altered the concept of irrigability in the study area, converting lands that were often rolling, sandy, and plagued by wind erosion from low grade grazing to productive irrigated units. This development was entirely by private enterprise, with large corporate farms accounting for much of the effort. Little prior comprehensive planning or coordination took place. When the circulation of water is altered on such a massive scale, however, unplanned impacts may be far reaching. In this case they include:1) acceleration of the shift to high cost thermoelectric generation, 2) alteration of state institutions designed to allocate water, and 3) possible significant alterations of the socioeconomic fabric of small rural service centers. 相似文献
14.
Deborah Ulinski Potter Michael P. Stevens Judy L. Meyer 《Journal of the American Water Resources Association》1982,18(4):627-633
ABSTRACT: Information on biologically important physical and chemical variables is presented for Lake Oconee, a newly impounded pumped storage reservoir in Georgia. During its first summer, when no pumping occurred, temperature, oxygen, pH, inorganic nitrogen, and phosphorus were vertically stratified with severe hypolimnetic oxygen depletion. During the second summer, when pumped storage was in operation, more homogenous vertical profiles, generally higher oxygen, and lower dissolved nutrient concentrations were observed. These pumped storage effects were observed at all stations, rather than being confined to the immediate vicinity of the dam. 相似文献
15.
S. W. Hostetler 《Journal of the American Water Resources Association》1991,27(4):637-647
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies. 相似文献
16.
Alden R. Hibbert 《Journal of the American Water Resources Association》1983,19(3):375-381
Increasing water for onsite and offsite uses can be a viable objective for management of certain western rangelands. One approach utilizes water harvesting techniques to increase surface runoff by preventing or slowing infiltration of rain. An attractive alternative, where applicable, is to replace vegetation that uses much water with plants that use less so that more water percolates through the soil to streams and ground water. Most sites are too dry to increase water yield in this way; probably less than 1 percent of the western rangelands can be managed for this purpose. However, where annual precipitation exceeds about 450 mm (18 inches) and deep-rooted shrubs can be replaced by shallow-rooted grasses, there is potential to increase streamflows and to improve forage for livestock. Little or no increase can be expected by eradication of low-density brush and pinyon-juniper woodlands. Potentials for improving water yield are reviewed and summarized by vegetation types. 相似文献
17.
R. Dennis Ham 《Journal of the American Water Resources Association》1982,18(5):785-789
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip. 相似文献
18.
Timothy A. Burton 《Journal of the American Water Resources Association》1997,33(6):1187-1196
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover. 相似文献
19.
Rodney L. Clouser William L. Miller 《Journal of the American Water Resources Association》1980,16(3):453-458
ABSTRACT: A study was undertaken to determine the effect of water intensive appliances or activities on household water consumption. Activities included in the study were use of the washing machine, dishwasher, swimming pool, and lawn watering. In the majority of cases these activities increased per capita consumption and were statistically significant. Households included in the study were not familiar with water saving devices available in the retail market. Even if tehse appliances were purchased, private economic benefits to the household would be low due to the inexpensive water charges levied. However, aggregate community benefits could be large if new well drilling cost or increase in storage facilities could be avoided. In order to avoid these increased costs, regulation or subsidy programs may be the most efficient policy alternatives available to the communities. Subsidies and regulation could potentially decrease water use and offer alternatives to increasing the water supply. 相似文献
20.
Steven E. Plotkin Harris Gold Irvin L. White 《Journal of the American Water Resources Association》1979,15(1):94-107
ABSTRACT: Problems of water quality and quantity are critical to development of the energy resources of the Western U. S. Based on a number of independent measures, the Upper Colorado River Basin will experience severe water availability problems in a few decades if projected energy and agricultural development occurs. Given the impending collision between the competing interests of various Western water users, water resource management and conservation deserves the utmost attention. Substantial opportunities for conservation exist in energy and agricultural development. Selection of both conversion and cooling technologies and careful siting decisions can sharply reduce the water requirements of energy development. Agricultural water conservation strategies include improving irrigation and cultivation practices, removing phreatophytes, removing marginal lands from production, and changing crop patterns. In order to accomplish significant conservation, however, there must be changes in those aspects of Western water law that remove conservation incentives from the water use system. 相似文献