首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: A multi-criteria approach to ground water quality monitoring network design is developed. The methodology combines multi-criteria decision making (MCDM) and modifications of geostatistical variance reduction analysis. Composite programming, a distance based optimization algorithm that employs a hierarchial structure, is used for the MCDM component of the design methodology. MCDM allows the consideration of numerous, often conflicting, design criteria. The methodology is useful for identifying the preferred combination of direct borehole and indirect geo-electric data. It also permits the use of prior information during initial stages of network development. Multi-variate kriging is employed to evaluate network performance using the combination of direct borehole data and indirect geoelectric data. Weighted measures of estimation variance are used as primary measures of performance, with the reduction in estimation variance being computed by the fictitious point method. Case study results demonstrate that the network design methodology can be used in both early and late phases of network development. It also leads to selection of the preferred combination and spatial orientation of direct and indirect data sources while considering cost-effectiveness and performance of alternative designs.  相似文献   

2.
    
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

3.
ABSTRACT: Areas of low topographic relief have low water-table gradients and make the direction of movement of contaminants from land fills in the ground water difficult to predict from regional gradients alone. The landfill, nearby free-flowing ditches or canals, variations in hydraulic conductivity, and the influence of nearby pumping wells can all affect the direction of flow. In low-gradient areas the concepts of “upgradient” and “downgradient” are less useful in planning the location of monitoring wells than in areas of higher relief. Low-relief areas also may be affected by the discharge of mineralized water from deeper aquifers, naturally or through irrigation, which can mask geochemical surveys intended to detect landfill leachate. Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7×10?-4 to 5×10?-4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.  相似文献   

4.
ABSTRACT: Water quality in the Brazos River of Texas is seriously degraded by natural salt pollution. Two thousand tons/day of total dissolved solids emanate from brine springs and seeps in the Upper Brazos River drainage. Approximately 45 percent of the total salt load comes from a relatively small flow in the Dove Creek area. The companion paper demonstrates that a system of wells pumping brine at a constant rate of about 2 cfs from the near surface aquifer should eliminate the brine springs in this area. In this paper, injection into deep brine aquifers is shown to be a feasible brine disposal alternative. Four brine aquifers were determined from the literature to be possible injection zones. Accurate net aquifer thickness maps were generated in a 23 by 14 mile area centered on the Dove Creek area for three of the aquifers from an interpretation of 41 well logs. Constant injection for a project life of 100 years was simulated using the SWIFT/486 software. Modeling suggests that one well would be sufficient to inject the entire disposal volume into either the Strawn or Ellenburger Formation.  相似文献   

5.
ABSTRACT: Ground water flow and supply at the Whiteshell Research Area (WRA) in southeastern Manitoba and the advective movement of contaminants from a hypothetical nuclear fuel waste disposal vault to the adjacent biosphere and a nearby ground water supply well are simulated using finite-element modeling and numerical particle-tracking technique. The hypothetical vault is located at a depth of 500 m, below the water table, in low-permeability plutonic rock of the Canadian Shield. The rock mass is intersected by high-permeability fracture zones (aquifers), which also act as conduits for vault contaminants to migrate to the ground surface. The ground water resource is, therefore, limited in quantity and quality and should be explored with care. A 30 m deep well, which pumps water at a rate of 120 m3/yr from a low-dipping fracture zone, LD1, reduces natural discharge from the system to augment natural recharge. At this pumping rate, a 100 m or 200 m deep well neither reduces discharge nor induces recharge into the system. Thus, at the WRA, a 30 m deep domestic water supply well best meets the water requirements of a one-person household at the rate of 120 m3/yr. The 100 m and 200 m wells best meet the requirements of a family of six and a family of six with light irrigation, respectively, without capturing contaminants’pathways from the vault to the ground surface. By virtue of the proximity of the 200 m well intake to the hypothetical vault, this well performs best as a purge well at pumping rates of 0,000 m3/yr and greater. Finite-element modeling is useful in evaluating the water supply potential of a fractured rock environment in which a nuclear waste disposal vault is proposed to be sited.  相似文献   

6.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

7.
    
ABSTRACT: Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two‐component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.  相似文献   

8.
9.
    
ABSTRACT: The concentrations of dissolved fixed inorganic nitrogen (ΣN) in Bermuda ground waters can be very high due to both natural and anthropogenic processes. The high anthropogenic flux is due to domestic cesspit operation. Mass balance calculations indicate that ground water seepage, especially rich in ΣN, is a major source of nutrients into the near shore coastal zone of Bermuda. The ground water flux of ΣN is approximately 1.5 to 4 times that of the sewage flux of ΣN to Bermuda's nearshore waters. This input of ΣN may be important in the development of algal blooms in these waters. Our work, coupled with other recent investigations, suggests that the ground water input of nutrients into nearshore marine waters is an important process globally.  相似文献   

10.
    
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.  相似文献   

11.
    
ABSTRACT: Earthen waste storage structures (EWSS) associated with large confined (concentrated) animal feeding operations (CAFOs) were evaluated for their potential to impact water resources in Iowa. A representative sample of 34 EWSS from a digital database of 439 lagoons and basins permitted between 1987 and 1994 was analyzed. Eighteen percent (6 of 34) directly overlie alluvial aquifers that are used widely for potable water supply. Ninety‐four percent (29 of 31) were constructed below the water table based on EWSS depth data. At 65 percent of EWSS (22 of 34), 50 percent or more of the manure‐spreading area (MSA) has a water‐table depth less than 1.6 m. At 74 percent of EWSS (25 of 34), 90 percent or more of the MSA contains soil with vertical K exceeding 25.4 mm/hr. Seventy‐one percent (24 of 34) occur where 10 percent or less of the MSA is frequently flooded. No significant differences were found among leakage rates due to aquifer vulnerability class or surficial material. However, at least 50 percent of EWSS (14 of 28) leaked at rates significantly greater than 1.6 mm/d under the new construction standard. The estimated 5,000 unregulated CAFOs may have a greater potential to impact water resources in Iowa.  相似文献   

12.
    
ABSTRACT: A procedure using a simple, empirically‐based model that makes efficient use of available information has been developed for designing a ground water monitoring well network. A moving plume is described by siting wells in a sequential manner, relying upon two‐dimensional concentration data obtained from previously installed wells to determine the locations of future wells. Data sets from two well known, densely monitored natural gradient tracer studies were used to test the procedure. Plumes defined by all information in the original networks were compared to those defined by reduced networks designed by the new procedure. The new procedure tracked the plumes using only a portion of that information. The new procedure could have reduced the number of wells in the original tests by about 50 percent without appreciable loss of plume information as measured by plume location and extent and by tracer mass.  相似文献   

13.
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here.  相似文献   

14.
    
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change.  相似文献   

15.
    
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

16.
ABSTRACT: Numerical simulation of ground water solute transport is combined with linear programming to optimize waste disposal. A discretized form of the equation governing solute transport is included as a set of constraints in a linear program. Two problems are described. First, the management model is used to maximize ground water waste disposal. The model constrains disposal activities so that the quality of local ground water supplies is protected. Parametric programming is shown to be important in evaluating waste disposal tradeoffs at the various facilities. Changes in the velocity field induced by waste water injection cause a nonlinearity in the solute transport equation which is dealt with by employing an iterative procedure. The second problem is aimed at identifying all sites which are suitable for waste disposal in the subsurface. The management model is manipulated so that the optimal value of the dual variables are “unit source impact indicators.” This physical interpretation is valuable in identifying feasible disposal sites. The joint simulation and optimization approach permits the management of complex ground water systems where the aquifer is used simultaneously for waste disposal and water supply.  相似文献   

17.
    
ABSTRACT: Illinois data from 168 months (1986–1999) were investigated to determine the responses of surface‐water and ground‐water resources to precipitation. Such responses were generally within the month of occurrence or one to two months later, with recovery being reached another one to three months into the future, depending on season of the year. Although the drought of 1988 immediately impacted surface‐water and ground‐water resources, the time of recovery was substantially longer compared to those of individual dry months, generally continuing for several months. The extremely wet summer of 1993 resulted in elevated responses in water resources almost immediately, but in this instance continued through the following fall and winter, into the spring of 1994.  相似文献   

18.
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research.  相似文献   

19.
    
ABSTRACT: In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements.  相似文献   

20.
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号