首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Factor analysis is used to identify and summarize the socioeconomic changes occurring in the Tennessee River Watershed. A general factor analysis program is applied to a set of 25 socioeconomic variables hypothesized to represent many of the dimensions of regional socioeconomic change. The analysis identifies seven factors that underlie and explain socioeconomic change in the Tennessee River Watershed.  相似文献   

2.
ABSTRACT: There is a general belief in the public eye that extreme events such as floods are becoming more and more common. This paper explores this hypothesis by examining the historical evolution of annual expected flooding damage on the Chateauguay River Basin, located at the border between the United States and the province of Quebec, Canada. A database of basin land use was constructed for the years 1930 and 1995 to assess anthropogenic changes and their impact on the basin's hydrology. The progressive modification of the likelihood of a flooding event over the same period was then investigated using homogeneity and statistical tests on available hydrometric data. The evolution of the annual expected flooding damage was then evaluated using a coupled hydrologic/hydraulic simulator linked to a damage analysis model. The simulator and model were used to estimate flooding damage over a wide range of flooding return periods, for conditions prevailing in 1963 and 1995. Results of the analysis reveal the absence of any increasing or decreasing trend in the historical occurrence of flooding events. However, a general increase in the annual expected flooding damage was observed for all studied river sections. This increase is linked to an historical increase in damages for a given flooding event, and is the result of unbridled construction and development within the flood zone. To assess for future trends, this study also examined the potential impacts linked to the anticipated global warming. Results indicate that a significant increase in seasonal flooding events and annual expected flooding damage is possible over the next century. In fact, what is now considered a 100‐year flooding event for the summer/fall season could become a ten‐year event by the end of this century. This shows that potential future impacts linked to climate change should be considered now by engineers, land planners, and decision makers. This is especially critical if a design return period is part of the decision making process.  相似文献   

3.
ABSTRACT: Habitat diversity and invertebrate drift were studied in a group of natural and channelized tributaries of the upper Des Moines River during 1974 and 1975. Channelized streams in this region had lower sinuosity index values than natural channel segments. There were significant (P=O.05) positive correlations between channel sinuosity and the variability of water depth and current velocity. Invertebrate drift density, expressed as biomass and total numbers, also was correlated with channel sinuosity. Channelization has decreased habitat variability and invertebrate drift density in streams of the upper Des Moines River Basin and probably has reduced the quantity of water stored in streams during periods of low flow.  相似文献   

4.
ABSTRACT: Outdoor recreation is a major, growing use of water resources in the United States. The economic effects of expenditures by visitors to three recreational river sites on local economies surrounding the sites were estimated using an input-output model (IMPL.AN). Expenditure data were from the Public Area Recreation Visitors Study (PARVS). Results indicate that visitor spending stimulates a considerable amount of economic activity and growth in local economies. Economic effects include increases in total gross output ranging from $2.6 million to $13.4 million, increases in total income ranging from $1.2 million to $5.6 million, and increases in employment ranging from 60 to 292 jobs.  相似文献   

5.
ABSTRACT: A procedure is presented for estimating flooding probabilities resulting from either open water or ice condition events. The methodology involves individually fitting a distribution function to water stages from open water and ice events and determining the composite probability of exceedence of any stage value. The parameters of the two distribution functions are estimated using censored maximum likelihood. The approach is evaluated with a Monte Carlo sampling program and is applied to estimate flooding probabilities on the Yukon River.  相似文献   

6.
ABSTRACT: H2SO4 (sulfuric acid) is formed by a chemical process that occurs in unreclaimed coal mines. The highly toxic acid then flows into the lower swamp areas where it causes considerable damage to the ecosystem. The major effect of the acid is the mass destruction of thousands of trees and various other phreatophytic plants. The contamination is so serious that most of the wildlife has migrated out of the affected area of the swamp in order to survive. Certain geological features such as coal bearing monadanocks make the area somewhat sensitive to mining activities and related geologic hazards. New methods of mine acid abatement make the concept of mass reclamation more realistic than at any time in the past. The constant annihilation of swamp life and processes emphasizes the urgent need for reclamation of the swamp.  相似文献   

7.
ABSTRACT: In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and South port Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978–1980) and post- (1983–1986) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.  相似文献   

8.
ABSTRACT: On February 12, 1992, a portion of the Ventura River, California, flowed through the Ventura Beach RV Resort which had recently been constructed across a major historically active distributary of the Ventura River delta. State and local land-use planners recognized the flood hazards associated with the site, but decision-makers relied on analytical methods developed by the U.S. Army Corps of Engineers and flood-hazard categories developed by the Federal Emergency Management Agency, which did not adequately reflect the mobile nature of the Ventura River channel and distributaries. A better understanding of the historical behavior of the Ventura River could have averted the flood damages experienced in 1992. Low intensity recreational, agricultural, or habitat restoration use of the site would minimize potential flood damages and obviate the need for structural flood protection that would impact the river's natural resources. Continued operation of the recreational vehicle park could result in additional flood damages in the relatively near future; recognizing the limitations of the flood-modeling methodologies used for the Ventura Beach RV Resort could prevent similar miscalculations of flood potential in comparable situations.  相似文献   

9.
ABSTRACT: Effects of no-flow river conditions on the quantity and quality of water in the Platte River well field of the City of Grand Island, Nebraska, were examined utilizing a finite-difference computer simulation model specifically developed for this well field. Results suggest that the effects of these no-flow periods on water quality may be most important. In particular, the no-flow periods eliminate the hydraulic barrier between the well field and an area north of the River that is contaminated with nitrate (concentrations in the 20 to 40 mg/1 NO3-N range). They also change the direction and velocity of movement of the contaminated ground water. Simulation results indicate that contaminated ground water moves toward the well field with a velocity of 0.42 ft/d after 30 days of no-flow and 1.43 ft/d after 180 days of no-flow. Limiting no-flow conditions to 10 consecutive days would protect the well field.  相似文献   

10.
ABSTRACT: A new and practical concept in water resources modeling and optimization is introduced. Instead of unrealistically assuming a multipurpose reservoir to be composed of a single lumped pool of water, it is treated as two different pools namely conservation and flood pools. Based on this treatment, the optimization problem is stated using the concepts of Lagrange multipliers and parameter optimization. The optimization problem consists of the material balance equation, the constraints on control and state variables and the objective function.  相似文献   

11.
ABSTRACT: Analysis of a small urban watershed's flooding was undertaken to determine causes and solutions to this serious environmental hazard affecting University Circle, the cultural heart of Greater Cleveland. Doan Brook is a small, highly disturbed urban stream draining 11.3 square miles. Much of the stream coridor and associated park land is owned by the public. The upper watershed lies in the communities of Shaker Heights and Cleveland Heights who lease park land from Cleveland. Two 50-year floods seriously affected the Circle area in August 1975 generating over $1 million in damages. These events resulted from excessive rainfall triggering rapid earth movement of valley walls in the upper watershed, decreased basin lag time from the infilling of several small upland lakes, a seriously undersized stream channel and storm culvert (at University Circle), and complex institutional arrangements between the three communities in the watershed. Suggestions are presented for a methodology to resolve the technical aspects of the flooding problem.  相似文献   

12.
ABSTRACT: The Fairbanks Water Treatment Plant in Fairbanks, Alaska, processes approximately 3 MGD of drinking water using lime softening. Approximately 0.3 MGD of lime-sludge from the treatment process is combined with effluent from a nearby power plant and discharged to the Chena River. There is little information available on the impact of water-treatment sludge discharges, and virtually no information on the impacts of such discharges in polar environments. Concern surrounding the discharge of water treatment sludges have centered on alum-sludge due to the potential toxic effects of aluminum. Because of the relatively benign composition of lime-sludge, very little research has been published. However, there is the possibility that discharge of solids will result in sedimentation, accumulation of solids, and subsequent impacts on benthic organisms. This paper reports on the results of a study to determine if lime-sludge discharge from the water treatment plant is adversely impacting the river environment. The results provide basic information on the important variables of concern in lime-discharges to rivers. Samples from the discharge of the water treatment plant and combined water treatment plant/power plant effluent were collected weekly over a one-year period, and in-stream benthic and water column samples were collected biweekly during the fall and spring. Sediment and water quality data indicate that while significant accumulation of sludge solids is found downstream of the water treatment plant outfall, they are flushed out of the system by spring flows, which are significantly increased by snow melt. This process is most likely repeated on a yearly cycle. Hence, the data suggest that the FMUS water treatment plant's discharge of lime-sludge is probably not adversely impacting the river. More generally, this may indicate that the natural flow variations and sediment-laden characteristics of Arctic, glacier-fed rivers may assimilate large quantities of nonputrescible solids without significant changes in the natural river environment. Further research in this area is required to verify this conclusion.  相似文献   

13.
ABSTRACT: The importance of water conservation was emphasized by a proposed National Water Policy which was established during the previous Carter Administration. This policy stressed water conservation on a national scale. Such a policy sought to apply one program to all water resources problems. Before implementation of this or another such policy, consideration must be given to those vast areas of the country which in reality do not have a shortage of water. One of these areas is the French-Broad River basin in Tennessee. This report was formulated in an effort to describe both the positive and negative effects of water policies which would bring about either a 10 percent or 30 percent reduction in water usage in this basically water rich area. The parameters used in the evaluation included selected economic, sociological, legal, and environmental impacts.  相似文献   

14.
ABSTRACT: Periodic flood disturbance is a well known controlling factor of in channel and floodplain ecosystem function. However, channel manipulations during the last century have potentially altered hydrologic fluctuations, and thus ecosystem function. We examined temporal river stage hydrology, through autocorrelation analysis, at seven gauges along the Mississippi River to quantify flow periodicity and effects of systematic channel modifications on flow periodicity. Intraannual variation follows a strong one‐year cycle of six months higher flow and six months lower flow for the entire Mississippi River drainage, with precipitation as a driving force. Interannual hydrologic variation differs between the upper and lower river segments. A clear quasi‐biennial oscillation pattern was evident throughout the lower river section. The effect of channel alterations was a decreased magnitude of differences between lower and higher flows. The upper section, however, suggests a 12‐to 14‐year periodicity prior to alterations and a decreased duration of lower flow years following systematic modifications. Interannual variograms clearly depict very different temporal hydrology between the upper Mississippi River and the lower Mississippi River, suggesting the simple transfer of knowledge from one segment to the other oversimplifies the complexity of a large river system.  相似文献   

15.
ABSTRACT: Flow regulation impacts the ecology of major rivers in various ways, including altering river channel migration patterns. Many current meander migration models employ a constant annual flow or dominant discharge value. To assess how flow regulation alters river function, variable annual flows ‐ based on an empirical relationship between bank erosion rates and cumulative effective stream power ‐ were added into an existing migration model. This enhanced model was used to evaluate the potential geomorphic and ecological consequences of four regulated flow scenarios (i.e., different hydrographs) currently being proposed on the Sacramento River in California. The observed rate of land reworked correlated significantly with observed cumulative effective stream power during seven time increments from 1956 to 1975 (r2= 0.74, p = 0.02). The river was observed to rework 3.0 ha/yr of land (a mean channel migration rate of 7.7 m/yr) with rates ranging from 0.8 ha/yr to 5.1 ha/yr (2.0 to 13.3 m/yr), during the analyzed time periods. Modeled rates of land reworked correlated significantly with observed rates of land reworked for the variable flow model (r2= 0.78, p = 0.009). The meander migration scenario modeling predicted a difference of 1 to 8 percent between the four flow management scenarios and the base scenario.  相似文献   

16.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

17.
ABSTRACT: During the past 15 years a number of methods have been developed that purport to evaluate the amenity values of rivers. Most methods are designed to identify the physical, biological, cultural, and esthetic features of a river or river corridor that are conducive to recreation, preservation, and other amenity values. This paper reviews and comments on 13 methods that evaluate amenity values. The methods are reviewed and discussed under three general headings: River Recreation Potential Evaluation, River Esthetic Evaluation, and River Preservation Evaluation. A final section of the paper identifies areas where improvements and further research are needed.  相似文献   

18.
Several large agricultural pumps, located in the upper St. Johns River Basin, Florida, and representative of the numerous pumps operating in the basin, were monitored during the spring and summer of 1982. These pumps have rated capacities ranging from 36 to 334 ft3/s and drain various quantities of improved pasture, row crop, and citrus land uses. The combined total pumping capacity of the pumps in this study is approximately equal to the average flow at US 192, near Melbourne (691 cfs). Results indicate high nutrient and suspended solids loading to the river, but the relative magnitude of each parameter varies with pump site and date. The row crop/Mary A pump (267 ft3/s capacity) exhibited the poorest water quality of the sampled pumps and appeared to have the greatest pollutional potential. The average suspended solids loading rate from the Mary A pump was high (37,900 Kg/day). The average total nitrogen (TN) and total phosphorus (TP) discharge concentrations at this pump were also high, with values of 3.96 mg/L and 0.79 mg/L, respectively. As expected, nutrient loading rates reflected discharge rates, to a large degree. Average TN loading rates for the pumping stations varied from 86 to 1935 Kg/day while TP loading ranged from 7 to 390 Kg/day. Nutrients from pumping are contributing factors to the increasing aquatic plant growth and algal blooms in the area. Poor quality discharge water, as well as rapid rises in water level from the cumulative discharges resulting in dead marsh vegetation and accompanying oxygen sags, have been suggested as causative factors for fish kills in the area.  相似文献   

19.
ABSTRACT: The potential for artificial ground water recharge by continuous flooding of dormant grapevines was evaluated in the San Joaquin Valley of California using the cultivar Thompson Seedless. The study was started in 1982 and was completed in 1985 after three complete flooding cycles during dormancy. An average daily rate of recharge of 80 mm/thy for a 32-day period each year was achieved through a clay loam soil. There were no adverse effects on the grapevines and yields in the flooded plots in any of the growing seasons following recharge periods. Yields were higher in the recharge plots than in the control plots in the last year of the study. We conclude that artificial ground water recharge by continuous flooding during grapevine dormancy is a viable recharge method.  相似文献   

20.
ABSTRACT: Floodwater-retarding impoundments, controlling 68 percent of the drainage area of Tonkawa Creek, a Washita River tributary in southwestern Oklahoma, have reduced the total flow volume about 36 percent over a 5-year period. Analyses showed the reduction occurred primarily in the less-than-2.5-cfs flow range, indicating the base flow regime has been altered. However, channelizing the downstream, mild-sloped, 3.6 miles of Tonkawa Creek that flows across a Washita River terrace increased the flow volume fourfold at the outlet. A double-masscurve analysis of water yield from a 1,127-square-mile Washita basin segment versus an untreated tributary showed the yield has not changed after 25 percent of the tributary area had been treated. Therefore, the flow reduction caused by structures is being offset by increased yields from channelization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号