首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barbeito I  Dawes MA  Rixen C  Senn J  Bebi P 《Ecology》2012,93(2):389-401
Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.  相似文献   

2.
The forest vegetation simulator (FVS) model was calibrated for use in Ontario, Canada, to predict the growth of forest stands. Using data from permanent sample plots originating from different regions of Ontario, new models were derived for dbh growth rate, survival rate, stem height and species group density index for large trees and height and dbh growth rate for small trees. The dataset included black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) for the boreal region, sugar maple (Acer saccharum Marsh.), white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.) and yellow birch (Betula alleghaniensis Britton) for the Great Lakes-St. Lawrence region, and balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) for both regions. These new models were validated against an independent dataset that consisted of permanent sample plots located in Quebec. The new models predicted biologically consistent growth patterns whereas some of the original models from the Lake States version of FVS occasionally did not. The new models also fitted the calibration (Ontario) data better than the original FVS models. The validation against independent data from Quebec showed that the new models generally had a lower prediction error than the original FVS models.  相似文献   

3.
Vigilance often decreases with increasing group size, due to lower predation risk or greater scramble competition for food. A group size effect on vigilance is seldom seen in primates, perhaps because scanning and feeding often occur simultaneously or because the distinction between routine and induced vigilance has not been investigated. We analyzed feeding and resting observations separately while distinguishing between routine and induced scans in four groups of wild ursine colobus monkeys (Colobus vellerosus) experiencing scramble competition for food and infanticide risk. We used linear mixed-effect models to test the effect of group size, age–sex class, number of neighbors, number of adult male neighbors, and height in the canopy on scanning rates (vigilance) with and without evident conspecific threat. Food type was also examined in the feeding models. Perceived predation risk affected vigilance more than scramble competition for food and infanticide risk. Routine and induced vigilance were greatest at lower canopy heights during feeding and resting and increased when individuals had fewer neighbors while resting. A group size effect was found on induced vigilance while resting, but scanning increased with group size, which probably indicates visual monitoring of conspecifics. Scanning rates decreased while feeding on foods that required extensive manipulation. This supports the idea that vigilance is relatively cost free for upright feeders when eating food that requires little manipulation, a common feature of folivore diets. In the presence of threatening conspecific males, close proximity to resident males decreased individual vigilance, demonstrating the defensive role of these males in the group.  相似文献   

4.
Boyden S  Binkley D  Stape JL 《Ecology》2008,89(10):2850-2859
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.  相似文献   

5.
In this study, we compared tree-growth rates (basal area increment) from recently dead and living Taurus fir (Abies cilicica Carr.) trees in the Kovada lake Forest of Isparta, Turkey. For each dead tree, tree-growth rates were analyzed for the presence of pre-death growth depressions in the study area (number of sample plots = 11) in 2006. However, we compared both the magnitude and rate of growth prior to death to a control (living) group of trees. Basal area increment (BAI) averaged substantially less during the last 10 years before death than for control trees. Trees that died started diverging in growth, on average, 50-60 years before death. About 18% of trees that died had chronically slow growth, 46% had pronounced declines in growth, whereas 36% had good growth up to death. However, tree-ring-based growth patterns of dead and living Taurus fir trees were compared and used 12 mortality models that were derived using logistic regression from growth patterns of tree-ring series as predictor variables. The four models with the highest overall performance correctly classified 43.8-56.3% of all dead trees and 75.0-87.5% of all living trees, and they predicted 25.0-43.8% of all dead trees to die within 0-15 years prior to the actual year of death.  相似文献   

6.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

7.
Factors affecting survival and recruitment of 3531 individually mapped seedlings of Myristicaceae were examined over three years in a highly diverse neotropical rain forest, at spatial scales of 1-9 m and 25 ha. We found convincing evidence of a community compensatory trend (CCT) in seedling survival (i.e., more abundant species had higher seedling mortality at the 25-ha scale), which suggests that density-dependent mortality may contribute to the spatial dynamics of seedling recruitment. Unlike previous studies, we demonstrate that the CCT was not caused by differences in microhabitat preferences or life history strategy among the study species. In local neighborhood analyses, the spatial autocorrelation of seedling survival was important at small spatial scales (1-5 m) but decayed rapidly with increasing distance. Relative seedling height had the greatest effect on seedling survival. Conspecific seedling density had a more negative effect on survival than heterospecific seedling density and was stronger and extended farther in rare species than in common species. Taken together, the CCT and neighborhood analyses suggest that seedling mortality is coupled more strongly to the landscape-scale abundance of conspecific large trees in common species and the local density of conspecific seedlings in rare species. We conclude that negative density dependence could promote species coexistence in this rain forest community but that the scale dependence of interactions differs between rare and common species.  相似文献   

8.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

9.
Functional traits and the growth-mortality trade-off in tropical trees   总被引:4,自引:0,他引:4  
A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.  相似文献   

10.
森林群落的生物量及其组成树种的含碳率是研究森林植被碳储量2个关键因子,对其测定可为估算区域和全国森林生态系统碳储量的提供依据。采用重铬酸钾容量法对滇西北香格里拉县4主要树种的含碳率进行了测定,并对不同树种不同林龄不同器官的含碳率进行分析。结果表明:4树种中,云南松Pinus yunnanensis的林分平均含碳率最大达到51.48%,其次是高山松Pinus densata 51.31%,冷杉Abies georgei 50.79%,川滇高山栎Quercus aquifolioides的含碳率最小为48.71%,通过统计检验,4树种之间的含碳率差异显著;同一树种不同林龄之间的含碳率也存在着差异,但是变化较小,均未超过3%;不管是同一树种不同器官之间还是同一器官不同树种之间的含碳率都存在差异,但含碳率变化不大,变异系数均未超过6%;针叶树种平均含碳率普遍高于阔叶树种。  相似文献   

11.
Vander Wall SB 《Ecology》2008,89(7):1837-1849
Selective pressures that influence the form of seed dispersal syndromes are poorly understood. Morphology of plant propagules is often used to infer the means of dispersal, but morphology can be misleading. Several species of pines, for example, have winged seeds adapted for wind dispersal but owe much of their establishment to scatter-hoarding animals. Here the relative importance of wind vs. animal dispersal is assessed for four species of pines of the eastern Sierra Nevada that have winged seeds but differed in seed size: lodgepole pine (Pinus contorta murrayana, 8 mg); ponderosa pine (Pinus ponderosa ponderosa, 56 mg); Jeffrey pine (Pinus jeffreyi, 160 mg); and sugar pine (Pinus lambertiana, 231 mg). Pre-dispersal seed mortality eliminated much of the ponderosa pine seed crop (66%), but had much less effect on Jeffrey pine (32% of seeds destroyed), lodgepole pine (29%), and sugar pine (7%). When cones opened most filled seeds were dispersed by wind. Animals removed > 99% of wind-dispersed Jeffrey and sugar pine seeds from the ground within 60 days, but animals gathered only 93% of lodgepole pine seeds and 38% of ponderosa pine seeds during the same period. Animals gathered and scatter hoarded radioactively labeled ponderosa, Jeffrey, and sugar pine seeds, making a total of 2103 caches over three years of study. Only three lodgepole pine caches were found. Caches typically contained 1-4 seeds buried 5-20 mm deep, depths suitable for seedling emergence. Although Jeffrey and sugar pine seeds are initially wind dispersed, nearly all seedlings arise from animal caches. Lodgepole pine is almost exclusively wind dispersed, with animals acting as seed predators. Animals treated ponderosa pine in an intermediate fashion. Two-phased dispersal of large, winged pine seeds appears adaptive; initial wind dispersal helps to minimize pre-dispersal seed mortality whereas scatter hoarding by animals places seeds in sites with a higher probability of seedling establishment.  相似文献   

12.
Recently developed structural retention harvesting strategies aim to improve habitat and ecological services provided by managed forest stands by better emulating natural disturbances. The potential for elevated mortality of residual trees following such harvests remains a critical concern for forest managers, and may present a barrier to more widespread implementation of the approach. We used a harvest chronosequence combined with dendrochronological techniques and an individual-based neighborhood analysis to examine the rate and time course of residual-tree mortality in the first decade following operational partial "structural retention" harvests in the boreal forest of Ontario, Canada. In the first year after harvest, residual-tree mortality peaked at 12.6 times the preharvest rate. Subsequently, mortality declined rapidly and approached preharvest levels within 10 years. Proximity to skid trails was the most important predictor both of windthrow and standing death, which contributed roughly equally to total postharvest mortality. Local exposure further increased windthrow risk, while crowding enhanced the risk of standing mortality. Ten years after harvest, an average of 10.5% of residual trees had died as a result of elevated postharvest mortality. Predicted cumulative elevated mortality in the first decade after harvest ranged from 2.4% to 37% of residual trees across the observed gradient of skid trail proximity, indicating that postharvest mortality will remain at or below acceptable rates only if skidding impacts are minimized. These results represent an important step toward understanding how elevated mortality may influence stand dynamics and habitat supply following moderate-severity disturbances such as partial harvests, insect outbreaks, and windstorms.  相似文献   

13.
《Ecological modelling》2004,174(3):225-239
Successional dynamics of forests under current and changed climate are often investigated using gap models, a subset of forest succession models that simulate establishment, growth, and mortality of trees. However, the mortality submodels of gap models are largely based on theoretical assumptions, and have not been tested in detail.In the present study, we compared the performance of a range of theoretical mortality functions (TMFs) that are commonly used in gap models with several empirical mortality functions (EMFs) that were derived using logistic regression from growth patterns of tree-ring series as predictor variables. Data from dead and living Norway spruce (Picea abies (L.) Karst.) trees from subalpine forests at three study sites in Switzerland were used to this end.Three of the four EMFs consistently performed better at all three sites, while three of the four TMFs performed worse than the remaining mortality functions. At one site, these three EMFs correctly classified 71–78% of the dead trees (48–72% for the three TMFs) and 73% (49–64%) of the living trees. 44–54% (21–25%) of the dead trees were predicted to die within 15 years prior to death. 0–2% (7–10%) of the dead trees and 5% (19–31%) of the living trees were predicted to die more than 60 years prior to the last measured year.We conclude that, unless the parameters of the TMFs are optimized for individual species, the TMFs are not appropriate to predict the time of tree death, in spite of their widespread use. A substantial change in simulated forest succession is to be expected if the currently implemented TMFs in gap models are replaced by species-specific EMFs.  相似文献   

14.
Miriti MN 《Ecology》2007,88(5):1177-1190
I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.  相似文献   

15.
When the distribution of species is limited by propagule supply, new populations may be initiated by seed addition, but identifying suitable sites for efficiently targeted seed addition remains a major challenge for restoration. In addition to the biotic or abiotic variables typically used in species distribution models, spatial isolation from conspecifics could help predict the suitability of unoccupied sites. Site suitability might be expected to increase with spatial isolation after other factors are accounted for, since isolation increases the chance that a site is unoccupied only because of propagule limitation. For two native annual forbs in Californian grasslands, we combined experimental seeding and niche modeling to ask whether suitability of unoccupied sites could be predicted by spatial variables (either distances from, or densities of, conspecific populations), either by themselves or in combination with niche models. We also asked whether experimental tests of these predictions held up not only in the short term (one year), but also in the longer term (three years). For Lasthenia californica, seed additions were only successful relatively near existing populations. For Lupinus nanus, seeding success was low and was positively related to the number of conspecifics within 1 km. For both species, a few previously unoccupied sites remained occupied three years after seeding, but this subset was not predictable based on either spatial or niche variables. Seed addition alone may be a limited means of native forb restoration if suitable unoccupied sites are either rare or unpredictable, or if they tend to be close to where the species already occurs.  相似文献   

16.
元宝山冷杉是仅分布于广西融水县元宝山上的濒危树种。本文分析认为致使其濒危的主要原因是气候变迁,此外,种子发芽率低、群落环境以及人为活动影响也是导致其濒危的重要原因。建议在严格保护和管理现有生境的同时,开展人工辅助更新,并在生境相似的地方育苗造林。  相似文献   

17.
No-take reserves are sometimes implemented for sustainable population harvesting because they offer opportunities for animals to spatially avoid harvesters, whereas harvesters can benefit in return from the reserve spillover. Here, we used the framework of predator-prey spatial games to understand how protected areas shape spatial interactions between harvesters and target species and determine animal mortality. In these spatial games, the "predator" searches for "prey" and matches their habitat use, unless it meets spatial constraints offering the opportunity for prey to avoid the mortality source. However, such prey refuges could attract predators in the surroundings, which questions the potential benefits for prey. We located, in the Geneva Basin (France), hunting dogs and wild boar Sus scrofa L. during hunting seasons with global positioning systems and very-high-frequency collars. We quantified how the proximity of the reserve shaped the matching between both habitat uses using multivariate analyses and linked these patterns to animals' mortality with a Cox regression analysis. Results showed that habitat uses by both protagonists disassociated only when hunters were spatially constrained by the reserve. In response, hunters increased hunting efforts near the reserve boundary, which induced a higher risk exposure for animals settled over the reserve. The mortality of adult wild boar decreased near the reserve as the mismatch between both habitat uses increased. However the opposite pattern was determined for younger individuals that suffered from the high level of hunting close to the reserve. The predator-prey analogy was an accurate prediction of how the protected area modified spatial relationships between harvesters and target species. Prey-searching strategies adopted by hunters around reserves strongly impacted animal mortality and the efficiency of the protected area for this harvested species. Increasing reserve sizes and/or implementing buffer areas with harvesting limitations can dampen this edge effect and helps harvesters to benefit durably from source populations of reserves. Predator-prey spatial games therefore provide a powerful theoretical background for understanding wildlife-harvester spatial interactions and developing substantial application for sustainable harvesting.  相似文献   

18.
McGuire KL 《Ecology》2007,88(3):567-574
Most tropical rain forests contain diverse arrays of tree species that form arbuscular mycorrhizae. In contrast, the less common monodominant rain forests, in which one tree species comprises more than 50% of the canopy, frequently contain ectomycorrhizal (ECM) associates. In this study, I explored the potential for common ECM networks, created by aggregations of ECM trees, to enhance seedling survivorship near parent trees. I determined the benefit conferred by the common ECM network on seedling growth and survivorship of an ECM monodominant species in Guyana. Seedlings with access to an ECM network had greater growth (73% greater), leaf number (55% more), and survivorship (47% greater) than seedlings without such access, suggesting that the ECM network provides a survivorship advantage. A survey of wild seedlings showed positive distance-dependent distribution and survival with respect to conspecific adults. These experimental and survey results suggest that the negative distance-dependent mechanisms at the seedling stage thought to maintain tropical rain forest diversity are reversed for ECM seedlings, which experience positive feedbacks from the ECM network. These results may in part explain the local monodominance of an ECM tree species within the matrix of high-diversity, tropical rain forest.  相似文献   

19.
Vegetation growth models often concentrate on the interaction of vegetation with soil moisture but usually omit the influence of groundwater. However the proximity of groundwater can have a profound effect on vegetation growth, because it strongly influences the spatial and temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. In two papers we describe the behavior of a coupled vegetation-groundwater-soil water model including the competition for water and light. In this first paper we describe the vegetation model, compare the model to measured flux data and show the influence of water and light competition in one dimension. In the second paper we focus on the influence of lateral groundwater flow and spatial patterns along a hillslope. The vegetation model is based on a biophysical representation of the soil-plant-atmosphere continuum. Transpiration and stomatal conductance depend both on atmospheric forcing and soil moisture content. Carbon assimilation depends on environmental conditions, stomatal conductance and biochemical processes. Light competition is driven by tree height and water competition is driven by root water uptake and its water and oxygen stress reaction. The modeled and measured H2O and CO2 fluxes compare well to observations on both a diurnal and a yearly timescale. Using an upscaling procedure long simulation runs were performed. These show the importance of light competition in temperate forests: once a tree is established under slightly unfavorable soil moisture conditions it can not be outcompeted by smaller trees with better soil moisture uptake capabilities, both in dry as in wet conditions. Performing the long simulation runs with a background mortality rate reproduces realistic densities of wet and dry adapted tree species along a wet to dry gradient. These simulations show that the influence of groundwater is apparent for a large range of groundwater depths, by both capillary rise and water logging. They also show that species composition and biomass have a larger influence on the water balance in eco-hydrological systems than soil and groundwater alone.  相似文献   

20.
Kumar S  Stohlgren TJ  Chong GW 《Ecology》2006,87(12):3186-3199
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号