首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
氧化E氮形成的微生物学分子机制研究进展   总被引:2,自引:0,他引:2  
1氧化亚氮(N2O)的形成 N2O是继CO 2、CH4之后的第三大温室气体,它能破坏大气中的臭氧层.在过去的20~30年间,N2O以每年0.2%~0.3%的速率增长,并且有进一步增长的趋势[1].地球上人类和其他生物的活动是N2O产生的主要来源,而微生物是其中最重要的生物源.微生物产生N2O的机理主要是通过硝化作用和反硝化作用过程进行的,如图1所示.  相似文献   

2.
人工湿地作为新兴的污水生态处理技术在村镇污水处理中得到广泛使用,系统中氮去除的最主要途径是微生物的硝化-反硝化作用。研究湿地污水处理系统微生物硝化-反硝化作用,对湿地污水处理工艺的优化及运行管理具有重要意义。2013年分春、夏、秋、冬四季对贵州草海污水湿地处理工程进行采样,研究了长期运行的湿地污水处理系统中氮循环菌数量、硝化-反硝化作用时空分布特征和系统内氮的空间分布规律。结果表明,草海污水人工湿地处理系统对TP和COD的处理效果较好,去除率分别达到57.8%和80.8%,但对TN和NH_4~+-N的去除率仅为43.3%和38.6%;硝化-反硝化作用在草海人工湿地系统中同时发生,硝化作用强度为0.9 mg·kg~(-1)·h~(-1),反硝化强度为30.5 mg·kg~(-1)·h~(-1),反硝化强度是硝化强度的30倍;硝化-反硝化作用在季节上均表现为夏季最高、春季最低,水平空间上呈逐级降低趋势;硝化-反硝化作用强度与总氮去除率呈现显著负相关(P0.05);4类脱氮细菌中,氨化细菌数量最大,高达10~9 MPN·g~(-1),反硝化菌次之,亚硝化菌最低,仅10~2 MPN·g~(-1);脱氮细菌数量与总氮去除率相关性不显著,脱氮过程可能受亚硝化菌的限制。总之,由于长期运行的人工湿地系统缺乏氧气,导致反硝化作用远大于硝化作用,硝化-反硝化作用的失衡最终影响湿地脱氮效率。因此,针对长期运行的人工湿地系统可以通过强化供氧促进硝化作用从而提高湿地脱氮效果。  相似文献   

3.
新型废水生物脱氮的微生物学研究进展   总被引:18,自引:0,他引:18  
生物脱氮是含氮废水处理公认的最佳处理方式,随着对生物脱氮微生物学原理研究的不断深入,许多新的生物脱氮特殊菌株或菌群及微生物转化机制不断被发现.本文在传统生物脱氮过程机理上,结合最近国内外生物脱氮的新发现,就短程硝化反硝化、同时硝化反硝化、厌氧氨氧化的微生物学原理进行了阐述.图1表2参23  相似文献   

4.
好氧同时硝化-反硝化菌的分离鉴定及系统发育分析   总被引:10,自引:0,他引:10  
从土壤中分离到一株好氧同时硝化-反硝化菌,编号为SDN,该菌株革兰氏染色呈阳性,球状或杆状,菌落颜色橙红色.该菌株以硝酸钠为氮源时能进行好氧反硝化作用;以乙酸钠和硫酸铵分别为碳源和氮源能进行异养硝化作用,能以乙酰胺为唯一碳源和氮源进行生长.部分长度的16S rDNA序列分析表明,分离菌株SDN与Rhodococcusruber的16SrDNA序列具有99%相似性.并用PHYLIPS程序将该菌株与报道的相关微生物进行了系统发育分析.图4表1参13  相似文献   

5.
在“碳中和”的大背景下,污水生物处理过程中氧化亚氮(N2O)的释放已经引起了人们的广泛关注,探究N2O的产生机理和寻找缓解N2O释放的策略也成为研究的热点.分析污水处理过程中能够产生N2O的微生物及其特性,以及硝化过程和反硝化过程N2O的产生机理,并从N2O释放影响因素的角度总结缓解污水生物处理过程中N2O释放的策略.随着对N2O产生和消耗的研究不断深入,N2O缓解释放的策略不再局限于工艺参数优化,微生物群落结构调控和完全反硝化过程强化也成为N2O减排策略研究的热点.生物处理硝化过程不能消耗N2O,只能通过减少N2O产生的方式来降低N2O的排放;与硝化不同,N2O是反硝化过程的中间产物,这也就意味着反硝化过程能够消耗N2O,因此反硝化过程作为N2  相似文献   

6.
本文设计4组模拟实验,研究不同条件下硝酸盐在水-土壤体系中的反硝化作用。实验结果说明,微生物在反硝化作用中起主要作用,反硝化速度与有机质含量呈对数正相关。30℃比15℃更有利于反硝化作用,恒温30℃厌氧培养96小时,可将120毫克/升的NO_3~--N去除80%,在浸泡或厌氧培养反硝化过程,NO_2~--N的最高浓度可达2—9毫克/升,但持续时间不长,3—6天即可降至土壤本底值。  相似文献   

7.
白酒生产过程中伴随高氮废水的产生,其中包含氨氮(NH_4~+-N)、硝氮(NO_3~--N)和亚硝氮(NO_2~--N),企业基于现有的曝气等工艺可以去除NH_4~+-N,但却难以有效去除NO_2~--N和NO_2~--N,导致总氮(TN)含量无法达到新标准(TN 20 mg/L),因此高效去除废水中的NO_3~--N和NO_2~--N成为当下的研究热点.采用上流式厌氧污泥床(up-flow anaerobic sludge blanket,UASB)生物反应器驯养活性污泥,形成稳定的微生物群系;筛选得到最佳碳源,构建了生物厌氧反硝化脱氮体系,并通过三代全长16S rRNA测序分析了体系的细菌群落结构.结果显示,在甲醇、乙酸钠、丁二酸钠、葡萄糖、酒厂原水、柠檬酸钠和MicroC多种碳源中,MicroC效果最佳,在处理高硝氮废水(NO_3~--N=531 mg/L)时,添加量为C/N=1.0,出水的NO_3~--N含量小于1 mg/L,NO_3~--N去除率达98%,COD去除率超过90%.该体系中,反硝化前期斯氏假单胞菌(Pseudomonas stutzeri)和硫杆菌(Thioclava sp.)是优势种,还原大量的NO_3~--N,而细菌多样性较低;反硝化后期微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)变成优势种,还原残留的NO_3~--N.本研究表明以MicroC为碳源的厌氧反硝化体系可实现酒厂高硝氮废水低成本且高效率的脱氮处理,物种Pseudomonas stutzeri发挥主要的反硝化作用,结果对反硝化工程有重要的指导意义.(图8表3参30)  相似文献   

8.
废水生物脱氮中N2O和NOx来源于硝化、反硝化、厌氧氨氧化和化学反硝化等过程.电子受体和供体浓度、pH、缓冲剂类型、有机负荷、微生物种类及其相互作用等都会影响这些气态中间产物的产生.NO2能够氧化氨和强化好氧和厌氧氨氧化,NO能够阻止C2H2对好氧氨氧化活性的抑制,两者对好氧氨氧化活性的恢复至关重要.所有这些表明,废水生物脱氮的气态中间产物N2O和NOx在氮的生物转化中具有重要的正面作用,甚至必不可少.基于NO2曝气技术和Brocadiaanammoxidans与Nitrosomonas协同作用的废水生物脱氮新技术开发是今后一段时间的重要研究方向.图4参35  相似文献   

9.
人工湿地脱氮途径及其影响因素分析   总被引:26,自引:0,他引:26  
张政  付融冰  顾国维  杨海真 《生态环境》2006,15(6):1385-1390
简述了人工湿地脱氮模型。各种形态的氮在人工湿地系统中可以通过氨的挥发、植物吸收、介质沉淀吸附以及微生物硝化/反硝化作用等过程被去除。讨论了各脱氮途径对人工湿地脱氮的贡献,在大多数人工湿地的pH条件下,湿地地面氨挥发可以忽略,湿地植物叶片氨挥发量尚不清楚。湿地介质的直接吸附是短期的。植物在湿地脱氮过程中起了重要作用,但一般认为植物直接吸收和存储只占湿地脱氮的一小部分,一般低于30%。微生物的硝化/反硝化作用,是人工湿地脱氮的最主要的形式。讨论了影响人工湿地硝化作用的主要因素:溶解氧,pH和温度。大多数人工湿地的pH适合硝化作用,溶解氧和温度对湿地硝化作用的影响最大。温度不仅影响微生物的硝化作用,而且可以间接地影响植物的生长从而影响人工湿地的脱氮性能。  相似文献   

10.
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点. 对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH3/NH4^+的跨膜转移、氨气逃逸等. 总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象. 最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的. 基于目前BES的优势,认为减少脱氮中间产物(NO2^- -N、N2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向. (图3 表2 参66)  相似文献   

11.
The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rond?nia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: -111 per thousand +/- 12 per thousand and -31 per thousand +/- 11 per thousand for a clay-rich Oxisol (TNF), -102 per thousand +/- 5 per thousand and -45 per thousand +/- 5 per thousand for a sandier Ultisol (TNF), and -10.4 per thousand +/- 3.5 per thousand (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (delta15Nalpha - delta15Nbeta, where alpha indicates the central nitrogen atom and beta the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2 per thousand +/- 8.4 per thousand and 31.6 per thousand +/- 8.1 per thousand, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.  相似文献   

12.
农田土壤硝化-反硝化作用与N_2O的排放   总被引:2,自引:0,他引:2  
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况。结果表明,小麦生育期土壤温度及含水量较低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高。土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量。玉米生育期土壤温度升高以及孔隙含水量有较大的改善,反硝化损失氮量、N2O生成排放量有明显上升。通常情况下土壤反硝化损失氮量与N2O排放氮量基本处于同一水平。在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用。在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面。  相似文献   

13.
氧化亚氮(N2O)是大气中的一种痕量气体,也是一种重要的温室效应气体,还可使臭氧层遭到破坏。大气中N2O浓度呈不断上升趋势,其上升与人类活动关系极大,对环境的潜在破坏性也愈加严重。土壤是N2O的重要产生源,土壤中的硝化作用和反硝化作用是N2O的主要生成过程。过量施用氮肥、含氮有机物燃烧、毁林开荒等人类活动对N2O释放增加的影响不容忽视。人类应采取各项可行的措施来减少N2O的释放量如提高氮肥利用效率,减少生物体燃烧,退耕还林和保护森林资源等。  相似文献   

14.
采用PCR-RFLP技术研究了不同C/N比下亚硝酸盐氧化菌及异养菌混合体系的微牛物多样性,并探讨了微生物菌群结构与其功能(硝化件能)的关系.C/N=0时,混合体系主要由自养菌和寡营养菌(85.1%)组成,包括亚硝酸盐氧化菌(NOB)、拟杆菌门、α-变形菌纲、浮霉菌门和绿色非硫细菌中的一些菌株.C/N=0.44时,混合体系中的自养菌减少,异养菌(主要是γ-变形菌纲的成员)大量出现.C/N=8.82时,γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas sp.占主导(93.8%),与此同时,随着C/N升高,该混合体系的硝化性能也由专一的亚硝酸盐氧化过程转变为同时硝化反硝化过程.微生物菌群结构的转变较好地解释了其硝化性能的改变.本研究揭示了微生物菌群结构与其功能的内在联系,同时表明PCR-RFLP技术与化学分析相结合是研究微生物菌群结构与功能的有力工具.图3表2参13  相似文献   

15.
王朝旭  叶磊  王衫允 《生态环境》2012,(7):1229-1234
为深入剖析水陆交错带N2O释放热区的机理,选择白洋淀一处典型水陆交错带为研究对象。通过对其纵剖面(0~80cm)分层土壤样品的理化指标、反硝化速率(DNR)、N2O产生速率及N2O还原酶基因(NosZ)丰度和多样性的分析发现,在水陆交错带陆域纵剖面中,表层土壤(0~10cm)的反硝化速率(DNR)和N2O产生速率均最高,分别为65.8和9.41nmol·g^-1·h^-1(以N及dw计);表层(0~10cm)和亚表层(10~20cm)土壤的nosZ基因丰度最高(分别为1.00×10^10genecopies·g^-1dw和9.23×10^9genecopies·g^-1dw)且没有显著性差异(p〈0.05)。生物多样性指数表明,表层土壤的nosZ基因生物多样性高于底层;在系统发育树中,表层和底层土壤的nosZ基因序列并没有明显的界限。Pearson相关性分析表明,在典型水陆交错带陆域纵剖面中,nosZ基因丰度与N2O/N2O+N2)呈负相关关系(r=0.766,p〈0.05),表明在水陆交错带区域nosZ基因丰度是N2O转化的指示指标。  相似文献   

16.
硝化抑制剂硝基吡啶在农业和环境保护中的应用   总被引:3,自引:0,他引:3  
讨论了硝化抑制剂硝基吡啶的作用机理,综述了硝基吡啶对农作物营养元素吸收、作物品质、作物产量、植物病害和毒害的影响,以及该硝化抑制剂对氮肥的淋溶损失和气态损失的影响.  相似文献   

17.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

18.
Biogeochemistry of a temperate forest nitrogen gradient   总被引:2,自引:0,他引:2  
Perakis SS  Sinkhorn ER 《Ecology》2011,92(7):1481-1491
Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant-soil-microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (U.S.A.). Surface mineral soil N (0-10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N.ha(-1) x yr(-1). Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for <20% of net N mineralization at low-N sites, increasing to 85-100% of net N mineralization at intermediate- and high-N sites. The ratio of net: gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a peak of approximately 35 kg N.ha(-1) x yr(-1). Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.  相似文献   

19.
Nitrous oxide (N2O) affects climate change as a greenhouse gas and indirectly contributes to stratospheric ozone depletion. The main source of N2O in soils is denitrification which requires high soil moisture, carbon and nitrate. Nitrification inhibitors can be used to mitigate emissions of N2O from soils. In Portugal, fertilisers are often applied when soils are still relatively warm and moist conditions conducive to denitrification. A Portuguese arable soil was inhibited with dicyandiamide, a nitrification inhibitor and the effect on soil microbiological activity and composition was determined after 46 days. Soils were then incubated and received carbon and ammonium under high soil water conditions and mineral N and N2O fluxes were measured during 22 days. We found that dicyandiamide decreased microbial populations and activity, but did not alter composition. Pre-conditioning of the soil with dicyandiamide was 80% more effective in reducing fluxes of N2O than simultaneous application with fertiliser.  相似文献   

20.
ABSTRACT

Nitrogen (N) application is the main agricultural management that increases nitrous oxide (N2O) concentration in the atmosphere. Freezing conditions are common phenomenon in the northern China that significantly affect soil N2O emissions through alterations in nutrients availability and microbial population. To develop a comprehensive understanding of how N fertilizer managements affect soil N2O emissions during the freezing process, a lab incubation was conducted in three typical cultivated soils (black soil, fluvo-aquic soil, or loess soil) by adding different N fertilizer sources, including ammonium chloride, sodium nitrate, or urea at different N levels (0, 80, 200, or 500 mg N/kg) at the start of freezing. The N2O emissions in the fluvo-aquic soil were significantly higher than in other soils. The application of nitrate in the fluvo-aquic soil promoted N2O emissions by five- and seven-fold higher compared to ammonium chloride and urea, whereas N2O emissions in black soil were enhanced by application of ammonium chloride. Data indicate that denitrification is the major pathway for N2O production in the fluvo-aquic soil during the freezing process, while ammonia oxidation responses accounts for elevated N2O production in black soil. No significant influence of N fertilizer levels on N2O emissions were found during soil freezing. These results suggest that agricultural practices that focus on mitigation of N2O emissions need to avoid selection of nitrate as N fertilizer source in fluvo-aquic soil prior to the freezing season. Future studies need to focus on how the expression of enzymes and/or shifts in microbial communities respond to different N fertilizers during freezing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号