首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Wild piscivorous fish, mammals, and birds may be at risk for elevated dietary methylmercury intake and toxicity. In controlled feeding studies, the consumption of diets that contained Hg (as methylmercury) at environmentally realistic concentrations resulted in a range of toxic effects in fish, birds, and mammals, including behavioral, neurochemical, hormonal, and reproductive changes. Limited field-based studies, especially with certain wild piscivorous bird species, e.g., the common loon, corroborated laboratory-based results, demonstrating significant relations between methylmercury exposure and various indicators of methylmercury toxicity, including reproductive impairment. Potential population effects in fish and wildlife resulting from dietary methylmercury exposure are expected to vary as a function of species life history, as well as regional differences in fish-Hg concentrations, which, in turn, are influenced by differences in Hg deposition and environmental methylation rates. However, population modeling suggests that reductions in Hg emissions could have substantial benefits for some common loon populations that are currently experiencing elevated methylmercury exposure. Predicted benefits would be mediated primarily through improved hatching success and development of hatchlings to maturity as Hg concentrations in prey fish decline. Other piscivorous species may also benefit from decreased Hg exposure but have not been as extensively studied as the common loon.  相似文献   

2.
The effects of acidification on wildlife inhabiting aquatic or semi-aquatic environments are reviewed, with particular reference to the possibility for increased dietary exposure to Hg, Cd, Pb and/or Al, and decreased availability of essential dietary minerals such as Ca. It is concluded that: (1) piscivores risk increased exposure to dietary methyl-Hg in acidified habitats, and Hg concentrations in prey may reach levels known to cause reproductive impairment in birds and mammals; (2) piscivores do not risk increased exposure to dietary Cd, Pb or Al because these metals are either not increased in fish due to acidification, or increase are trivial from a toxicological perspective; (3) insectivores and omnivores may, under certain conditions, experience increased exposure to toxic metals in some acidified environments. Exposure levels are likely to be sufficiently low, however, that significant risks to health or reproduction are unlikely. More importantly, these wildlife species may experience a drastic decrease in the availability of dietary Ca due to the pH-related extinction of high-Ca aquatic invertebrate taxa (molluscs, crustaceans). Decreased availability of dietary Ca is known to adversely affect egg laying and eggshell integrity in birds, and the growth of hatchling birds and neonatal mammals. Acidification-related changes in the dietary availability of other essential elements, such as Mg, Se and P, have not been established and require further investigation; (4) herbivores may risk increased exposure to Al and Pb, and perhaps Cd, in acidified environments because certain macrophytes can accumulate high concentrations of these metals under acidic conditions. The relative importance of pH in determining the metal concentrations of major browse species, and the toxicological consequences for herbivores wildlife, is not well established and requires further study. A decreased availability of dietary Ca is also likely for herbivores inhabiting acidified environments.  相似文献   

3.
Application of 5% (w:w) novel metal immobilizing agent reduced the water soluble, the calcium chloride extracted as well as the pore water concentration of zinc in soils from Maatheide, a metal contaminated site in the northeast of Belgium. Addition of the metal immobilizing agents also eliminated acute toxicity to the potworm Enchytraeus albidus and the earthworm Eisenia fetida and chronic toxicity to the springtail Folsomia candida. Cocoon production by E. fetida, however, was still adversely affected. These differences may be explained by the species dependent routes of metal uptake: F. candida is probably mainly exposed via pore water while in E. fetida dietary exposure is probably also important. From these results it is clear that organisms with different exposure routes should be used simultaneously to assess the environmental risk of metal contaminated soils.  相似文献   

4.
Fipronil is a phenyl pyrazole insecticide registered for agricultural use in many countries. Avian exposure to fipronil occurs mainly by ingesting contaminated insects or seeds. There is little information regarding the toxicological effects of fipronil in avian species and even less research documenting avian behavioural responses to fipronil ingestion. We examined the effects of a single oral dose of fipronil in northern bobwhite quail, the most fipronil-sensitive species tested to date, in respect to signs of intoxication and the metabolic fate of fipronil. Fipronil-treated birds did not eat or drink following pesticide administration, and as a result lost a significant amount of body mass. Treated birds also appeared withdrawn and did not respond to disturbance within the first hour after treatment. Identifiable signs of fipronil toxicity were not observed until at least 2d after treatment. Chemical analyses indicated a difference between fipronil and fipronil-sulfone residue distribution and bioaccumulation, with significantly higher (30- to 1000-fold) tissue concentrations of the sulfone detected at all time points from 8 to 96 h post-dose in brain, liver and adipose tissues. Tissue sulfone concentrations increased significantly in fipronil-treated birds, peaking at 72 h post-dose. Body mass decreased at all time points in dosed birds. The coincidence of the particular intoxication symptoms with the time course of rise in brain sulfone levels after fipronil dosing gives insight into possible mechanisms of toxicity in this highly sensitive species.  相似文献   

5.
Ecological effects, transport, and fate of mercury: a general review   总被引:42,自引:0,他引:42  
Boening DW 《Chemosphere》2000,40(12):26-1351
Mercury at low concentrations represents a major hazard to microorganisms. Inorganic mercury has been reported to produce harmful effects at 5 μg/l in a culture medium. Organomercury compounds can exert the same effect at concentrations 10 times lower than this. The organic forms of mercury are generally more toxic to aquatic organisms and birds than the inorganic forms. Aquatic plants are affected by mercury in water at concentrations of 1 mg/l for inorganic mercury and at much lower concentrations of organic mercury. Aquatic invertebrates widely vary in their susceptibility to mercury. In general, organisms in the larval stage are most sensitive. Methyl mercury in fish is caused by bacterial methylation of inorganic mercury, either in the environment or in bacteria associated with fish gills or gut. In aquatic matrices, mercury toxicity is affected by temperature, salinity, dissolved oxygen and water hardness. A wide variety of physiological, reproductive and biochemical abnormalities have been reported in fish exposed to sublethal concentrations of mercury. Birds fed inorganic mercury show a reduction in food intake and consequent poor growth. Other (more subtle) effects in avian receptors have been reported (i.e., increased enzyme production, decreased cardiovascular function, blood parameter changes, immune response, kidney function and structure, and behavioral changes). The form of retained mercury in birds is more variable and depends on species, target organ and geographical site. With few exceptions, terrestrial plants (woody plants in particular) are generally insensitive to the harmful effects of mercury compounds.  相似文献   

6.
环境中铅和镉的来源及其对人和动物的危害   总被引:6,自引:0,他引:6  
几十年来,由于科学技术的发展,环境中有毒或潜在有毒化学物,特别是重金属,种类和数量增加,对人和动物构成了严重威胁。在这些重金属中,铅和镉尤为突出,毒性最大。本文阐述了它们的主要来源,慢性毒性,长期容许量或安全标准,略述了这二种金属与其他元素或养分的相互作用,因为这些作用显著影响了它们的毒性,特别讨论了这些作用对二种金属的容许量或最小长期安全摄入量的影响及其复杂性,最后建议继续研究以找出显示铅和镉对人体亚临床反应的早期敏感性指标。  相似文献   

7.
Using mainly United Kingdom estuaries as examples, various factors governing the bioavailability, bioaccumulation and biological effects of heavy metals in sediment-dominated estuaries are reviewed. Estuaries and metals primarily discussed include the Mersey (Hg, methylmercury; Pb, alkyllead), the Loughor (Cr, Sn), the Severn (Ag, Cd), the Fal (As, Cu, Sn, Zn), Poole Harbour (Cd, Hg, Se, tributyltin) and Southampton Water (tributyltin). Concentrations and bioavailabilities of metals in estuarine sediments depend on many different processes. Examples include (1) mobilisation of metals to the interstitial water and their chemical speciation, (2) transformation (e.g. methylation) of metals including As, Hg, Pb and Sn (3) the control exerted by major sediment components (e.g. oxides of Fe and organics) to which metals are preferentially bound, (4) competition between sediment metals (e.g. Cu and Ag; Zn and Cd) for uptake sites in organisms, and (5) the influence of bioturbation, salinity, redox or pH on these processes. Under field conditions, identification of dominant processes can be achieved by observing the goodness of fit between metal concentrations in ubiquitous deposit-feeding species and levels in various types of sediment extract over a wide spectrum of sediment types. Factors of more local importance are often indicated by the marked deviation of some points from otherwise excellent relationships. For example, points lying above the line relating tissue Sn concentrations in the clam Scrobicularia plana to those in 1 n HCl extracts of sediments were found to reflect the accumulation of tributyltin, a more readily bioavailable form of Sn. In the same species, unexpectedly high tissue-Cu concentrations were characteristic of very anoxic in sediments and tissue And As and Pb concentrations were suppressed in sediments having high concentrations of Fe oxides. Under field conditions, examples of deleterious effects on benthic organisms that can be attributed to specific metallic pollutants are comparatively rare. Effects of tributyltins from antifouling paints on oysters and neogastropods have been documented and their toxicity has undoubtedly led to environmental degradation in many UK estuaries and coastal areas. In estuaries contaminated with metal-mining wastes, the effects of Cu and Zn on species distribution can be observed, but they are generally less obvious than would be predicted from experimental data. Effects are ameliorated by the induction of metal tolerance mechanisms in some species and in others by the appearance of tolerant strains. The induction of metal detoxification systems involving the formation of granules or metal-binding proteins leads in some species to tissue concentrations that are orders of magnitude higher than normal. For example, high concentrations of Cd and Ag have been found in some species from the Severn Estuary, although there is no unequivocal evidence that either metal has caused deleterious effects on benthic populations. On the other hand, experimental studies with Ag, Cd, Cr, Cu, Hg and Zn show that they are toxic to some species at environmentally realistic levels. Since pollutants rarely occur singly, it is likely that in many moderately contaminated estuaries metals contribute to the stress to organisms caused by substances requiring detoxification. There has been much speculation over the years concerning the biomagnification of metals with increasing trophic levels along food chains. Whilst animals having higher metal concentrations than their prey are sometimes found, the only consistent evidence of biomagnification concerns methylmercury. When estuarine birds are considered, there are relatively few instances in which deleterious effects can unequivocally be attributed to metals or their compounds. However, the Mersey bird kill was attributable to alkyllead pollution from industry. Among other organometals, methylmercury has proved toxic to birds but, so far, no evidence for the toxicity of tributyltin has been reported. However, the compound may have affected bird populations through its effects on the abundance of prey organisms, particularly estuarine molluscs. Of the inorganic forms of metals, Pb in the form of shot has caused problems in many areas and Cd, Hg and Se are suspected of causing toxic effects. There is little field evidence that birds have been affected by Ag, As, Cr, Cu or Zn individually. On the other hand, it is difficult to exclude the possibility that, additively, these metals may produce a significant effect. In part, the lack of evidence reflects the fact that relatively little research has been done. There is scope for more work on metals and organometals in estuarine birds, particularly with regard to their metabolism and their effects on juveniles and individuals subjected to stresses such as starvation.  相似文献   

8.
Limited toxicity data are available for estuarine and marine species and the widely used pyrethroid insecticide, permethrin. This study determined acute effects of permethrin on survival, lipid peroxidation, acetylcholinesterase activity, and splenocyte proliferation for two fish species found in South Carolina estuaries; juvenile red drum (Sciaenops ocellatus) and adult mummichog (Fundulus heteroclitus). Juvenile S. ocellatus were significantly more sensitive than adult F. heteroclitus to permethrin exposure, with a 96-h LC50 value of 8 μg/L determined for red drum compared to 23 μg/L for mummichog. Lipid peroxidation activity of the liver increased in permethrin-treated fish compared to control animals after 24 h and decreased after 96 h. Permethrin had no effect on acetylcholinesterase activity of the brain at the concentrations tested. Permethrin exposure significantly inhibited splenocyte proliferation, indicating an immunosuppressive effect. Most of the effects of permethrin on fish cellular stress enzymes and survival occurred at concentrations much higher than those typically measured in the environment. However, inhibition of splenocyte proliferation in juvenile red drum occurred at approximately twice that of measured permethrin concentrations in surface water. These findings may prove useful to the future management and regulation of pyrethroid insecticide use near estuarine habitats.  相似文献   

9.
A large data gap for reptile ecotoxicology still persists; therefore, ecological risk assessments of reptiles usually incorporate the use of surrogate species. This necessitates that (1) the surrogate is at least as sensitive as the target taxon and/or (2) exposures to the surrogate are greater than that of the target taxon. We evaluated these assumptions for the use of birds as surrogates for reptiles. Based on a survey of the literature, birds were more sensitive than reptiles in less than 1/4 of the chemicals investigated. Dietary and dermal exposure modeling indicated that exposure to reptiles was relatively high, particularly when the dermal route was considered. We conclude that caution is warranted in the use of avian receptors as surrogates for reptiles in ecological risk assessment and emphasize the need to better understand the magnitude and mechanism of contaminant exposure in reptiles to improve exposure and risk estimation.  相似文献   

10.
Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.  相似文献   

11.
尹倩  张薛  陆韻  赵璇 《环境工程学报》2014,8(4):1692-1698
大型蚤是一种国际公认的标准实验生物,广泛应用于污水、地表水等水质毒性检测。毒性水平较低的城市二级出水,对大型蚤往往无急性毒性效应,而具有慢性毒性效应,但慢性毒性检测周期过长,因此探索一种更灵敏的指标,实现快速检测,对于控制二级出水的水质风险具有重要意义。本研究考察了大型蚤在短期暴露于城市二级出水条件下,其体内乙酰胆碱酯酶、超氧化物歧化酶、过氧化氢酶、ATP酶、羧酸酯酶和碱性磷酸酯酶的酶活变化特征,从中筛选出对二级出水毒性响应灵敏的标志酶指标。实验结果表明,碱性磷酸酯酶、过氧化氢酶对二级出水毒性响应相对较灵敏,具有成为标志酶的潜力,研究结果为城市二级出水生物毒性评价方法优化提供新的思路。  相似文献   

12.
Toxicity of methyl-tert-butyl ether to freshwater organisms   总被引:5,自引:0,他引:5  
Increased input of the fuel oxygenate methyl-tert-butyl ether (MTBE) into aquatic systems has led to concerns about its effect(s) on aquatic life. As part of a study conducted by University of California scientists for the State of California, the Aquatic Toxicology Laboratory, UC Davis, reviewed existing literature on toxicity of MTBE to freshwater organisms, and new information was generated on chronic, developmental toxicity in fish, and potential toxicity of MTBE to California resident species. Depending on time of exposure and endpoint measured, MTBE is toxic to various aquatic organisms at concentrations of 57-> 1000 mg/l (invertebrates), and 388-2600 mg/l (vertebrates). Developmental effects in medaka (Oryzias latipes) were not observed at concentrations up to 480 mg/l, and all fish hatched and performed feeding and swimming in a normal manner. Bacterial assays proved most sensitive with toxicity to Salmonella typhimurium measured at 7.4 mg/l within 48 h. In microalgae, decreased growth was observed at 2400 and 4800 mg/l within 5 days. MTBE does not appear to bioaccumulate in fish and is rapidly excreted or metabolized. Collectively, the available data suggests that at environmental MTBE exposure levels found in surface waters (< 0.1 mg/l) this compound is likely not acutely toxic to aquatic life. However, more information is needed on chronic and sublethal effects before we can eliminate the possibility of risk to aquatic communities at currently detected concentrations.  相似文献   

13.
Methods of conducting a chronic sediment toxicity test with the estuarine amphipod Corophium volutator are described. They consist of a 49-day exposure, after which mortality, growth and reproduction are determined. Pilot experiments were used to optimize test design parameters such as temperature, duration, feeding and refreshing regimes, and effects of indigenous organisms. By way of further validation, the present study focused on the effects of four different parameters: oxygen saturation, salinity, ammonium and nitrite. These confounding factors might play an important role especially if the test is used for risk assessment of field-contaminated sediments. It is concluded that the present experimental design is well suited for chronic sediment exposures with C. volutator. The test can be performed at a broad range of salinity values, provided that controls are performed at the same salinity. Results further demonstrate that with the endpoints growth and reproduction this chronic test procedure is a factor 7-18 more sensitive to ammonium and nitrate than the standardized acute bioassay (endpoint mortality).  相似文献   

14.
In Aguascalientes, Mexico, there is a special concern about pesticides because of their intensive use on guava production areas, which are located in the vicinity of water reservoirs; thus, non-target organisms could be exposed. Thereafter, the aim of this work was to assess the effect of cypermethrin, Faena® (glyphosate), and malathion, which are the most used pesticides in Aguascalientes’ guava production, on the indigenous freshwater species Alona guttata (cladoceran) and Lecane papuana (rotifer). Acute 48-h toxicity tests were carried out, and LC50 values were calculated. Then, five sublethal concentrations (1/80, 1/40, 1/20, 1/10, and 1/5 of the respective LC50) were selected for the chronic assays: (a) intrinsic growth rate analysis in the rotifer and (b) partial life table analysis in the cladoceran. The results of the acute toxicity tests showed that A. guttata was more sensitive to malathion (LC50 = 5.26 × 10?3 mg/L) at concentrations found in natural environments with continuous application on guava fields, whereas L. papuana was more sensitive to Faena® (LC50 = 19.89 mg/L). The somatic growth of A. guttata was inhibited for the chronic exposure to cypermethrin. In addition, cypermethrin and Faena® seemed to exert endocrine disruptive effects on A. guttata. Moreover, malathion chronic exposure significantly decreased the survival of A. guttata. Moreover, L. papuana was affected chronically for the three pesticides.  相似文献   

15.
The influence of low dietary calcium on the accumulation and effects of dietary lead, cadmium and aluminum was examined in zebra finches and ring doves. In zebra finches fed a diet containing 0.3% Ca, the hepatic and renal accumulation of lead was enhanced approximately 400% and of cadmium about 150-200%, compared to birds fed a 3.0% Ca diet. Low dietary Ca also caused bones of female finches to lose an average of about 60% of their normal Ca content. Loss of bone-Ca was also observed in male finches, but was less than in females. In reproductively active ring doves, low (0.4%) dietary Ca enhanced the accumulation of lead and cadmium, but not of aluminum, compared with accumulation in doves consuming a 2.0% Ca diet. Enhanced accumulation of lead and cadmium was accompanied by increased synthesis of the metal-binding protein metallothionein and by greater inhibition of delta-aminolevulinic acid dehydratase activity. These results indicate that, under conditions of reduced dietary Ca availability, such as can occur in acid-impacted environments, wild birds risk increased uptake of certain toxic metals and may accumulate toxic concentrations of these metals more rapidly. Researchers should take account of dietary Ca levels when interpreting results of dosing studies in which metals such as lead and cadmium are administered to birds.  相似文献   

16.
Chen CS 《Chemosphere》2005,61(8):1142-1158
An ecological risk assessment was conducted for Keelung River in northern Taiwan. The objective of this study was to assess the risk to fish, aquatic insects, and benthic macroinvertebrates associated with chemical-of-potential-concern (COPC) in the river and to rank ecological risk for these chemicals. The protection of at least 95% of the species 90% of the time from acute and chronic COPC exposures was the defined assessment endpoint. Nine inorganic and organic contaminants were selected to evaluate the impact to aquatic community in the Keelung River. The quotient method served as screen level estimation of risk. The Aquatic Ecological Risk Assessment model was used to analyze exposure and ecological effects and to estimate community level risk. The logarithmic regression model between probability and lethal concentration was established. The combined risks of multiple chemicals were evaluated under assumption of additive risk. The results indicated that zinc and copper pose higher risk among metals. Ammonia, copper, and zinc posed virtually all of the risk, while organic COPCs posed a negligible risk. Potential ecological risk from ammonia exposure was greatest. The probability of more than 5% of the species being affected by acute or chronic toxicity of COPCs is about 100%. In average (50% of the time), 99% of the species would be affected by acute toxicity of COPCs, and about all the species would be affected by chronic toxicity of COPCs. Uncertainties in this assessment were associated with variability in ecosystem stressors, exposure data, ecological effect data, and risk characterization.  相似文献   

17.
Chronic toxicity of As, Co, Cr and Mn to Hyalella azteca can be described using a saturation-based mortality model relative to total-body or water metal concentration. LBC25s (total-body metal concentrations resulting in 25% mortality in 4 weeks) were 125, 103, 152 and 57,900 nmol g-1 dry weight for As, Co, Cr and Mn respectively. LC50s (metal concentrations in water resulting in 25% mortality in 4 weeks) were 5600, 183, 731, and 197,000 nmol L-1, respectively. A hormesis growth response to As exposure was observed. Growth was a more variable endpoint than mortality for all four toxicants; however, confidence limits based on growth and mortality all overlapped, except Cr which had no effect on growth. Mn toxicity was greater in glass test containers compared to plastic. Bioaccumulation of As, Co, Cr, and Mn was strongly correlated with, and is useful for predicting, chronic mortality.  相似文献   

18.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the two best-known perfluorinated chemicals and have received much attention due to their ubiquity in the environment. In the present study, we evaluated the effects of PFOS and PFOA on acute toxicity, superoxide dismutase (SOD), and cellulase activities in Eisenia fetida. The results of acute toxicity testing using a filter paper contact test and a natural field soil test showed that PFOA and PFOS exhibited acute toxicity in earthworms, and the toxic effect of PFOS was greater than that of PFOA. The results also showed that avoidance behavior is a more sensitive and easy operation biomarker than acute toxicity and will give us information for early diagnosis of soil pollution, well before the lethal effect becomes apparent. Subchronic exposure to PFOA or PFOS resulted in changes in SOD and cellulase activities in E. fetida, and SOD activity was more sensitive than cellulase activity during early exposure. Based on these findings, we suggest that avoidance behavior and SOD activity in earthworms are suitable biomarkers for evaluating the toxicity of PFOA- and PFOS-contaminated soils. These results indicate that exposure to PFOA and PFOS has a potential impact on soil animals and their environment.  相似文献   

19.
The acute effect of oil pollution on birds is on their thermal balance. Oil adheres to the plumage and causes a reduction in water repellant properties of the plumage, causing water to penetrate into the plumage to displace the insulating layer of air. The effect of oil on the plumage insulation is dose-dependent. The effect of oiling is greatly enhanced when the oil is spread in the plumage due to preening. In water, plumage oiling may cause the heat loss to exceed the bird's heat production capacity, resulting in hypothermia. If the oiled bird is ashore, with a dry plumage, it may have a normal thermal insulation. Bird species dependent upon feeding in water (such as diving birds) are therefore much more susceptible to the harmful effects of oil pollution than are semi-aquatic species that can feed ashore. It is possible to restore the water-repelling and insulative properties of the plumage by the process of cleaning if all the oil and soap is removed, and if the plumage is completely dry. Chemical treatment of oil has been suggested as a way to reduce the impact of oil spills on avian life. However, very few reports seem to have addressed the effects of chemically treated oil on the thermal balance of birds, and the results from one study actually indicate that oil treated with dispersants may be more harmful to birds than oil. The urgent need for more information about the effects of chemically treated oil on aquatic birds is therefore stressed.  相似文献   

20.
The oil spill dispersants, Corexit 9500 and Corexit 9527 have low to moderate toxicity to most aquatic species in laboratory tests. Toxicity estimates are significantly affected by test variables such as species, lifestage, exposure duration, and temperature. Aquatic toxicity data generated from spiked, declining exposures (107 min half-life) are more reflective of actual dispersant use conditions. Decisions to use oil spill response chemicals should not be based solely on aquatic toxicity. Factors to consider include product effectiveness, toxicity of dispersed oil, species/habitats requiring priority protection, and recovery potential of sensitive habitats and populations. An environmental risk assessment approach is recommended where dispersant toxicity data generated under environmentally relevant exposures are compared to estimated environmental concentrations of dispersants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号