首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
    
White-nose syndrome (WNS) is a fungal disease that has caused precipitous declines in several North American bat species, creating an urgent need for conservation. We examined how microclimates and other characteristics of hibernacula have affected bat populations following WNS-associated declines and evaluated whether cooling of warm, little-used hibernacula could benefit bats. During the period following mass mortality (2013–2020), we conducted 191 winter surveys of 25 unmanipulated hibernacula and 6 manipulated hibernacula across Pennsylvania (USA). We joined these data with additional datasets on historical (pre-WNS) bat counts and on the spatial distribution of underground sites. We used generalized linear mixed models and model selection to identify factors affecting bat populations. Winter counts of Myotis lucifugus were higher and increased over time in colder hibernacula (those with midwinter temperatures of 3–6 °C) compared with warmer (7–11 °C) hibernacula. Counts of Eptesicus fuscus, Myotis leibii, and Myotis septentrionalis were likewise higher in colder hibernacula (temperature effects = –0.73 [SE 0.15], –0.51 [0.18], and –0.97 [0.28], respectively). Populations of M. lucifugus and M. septentrionalis increased most over time in hibernacula surrounded by more nearby sites, whereas Eptesicus fuscus counts remained high where they had been high before WNS onset (pre-WNS high count effect = 0.59 [0.22]). Winter counts of M. leibii were higher in hibernacula with high vapor pressure deficits (VPDs) (particularly over 0.1 kPa) compared with sites with lower VPDs (VPD effect = 15.3 [4.6]). Counts of M. lucifugus and E. fuscus also appeared higher where VPD was higher. In contrast, Perimyotis subflavus counts increased over time in relatively warm hibernacula and were unaffected by VPD. Where we manipulated hibernacula, we achieved cooling of on average 2.1 °C. At manipulated hibernacula, counts of M. lucifugus and P. subflavus increased over time (years since manipulation effect = 0.70 [0.28] and 0.51 [0.15], respectively). Further, there were more E. fuscus where cooling was greatest (temperature difference effect = –0.46 [SE 0.11]), and there was some evidence there were more P. subflavus in hibernacula sections that remained warm after manipulation. These data show bats are responding effectively to WNS through habitat selection. In M. lucifugus, M. septentrionalis, and possibly P. subflavus, this response is ongoing, with bats increasingly aggregating at suitable hibernacula, whereas E. fuscus remain in previously favored sites. Our results suggest that cooling warm sites receiving little use by bats is a viable strategy for combating WNS.  相似文献   

2.
         下载免费PDF全文
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd‐infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post‐metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population‐level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.  相似文献   

3.
    
Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large‐scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease‐free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease‐associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species. Intervenciones para Reducir el Riesgo de Extinción en Anfibios Amenazados por la Quitridiomicosis  相似文献   

4.
Pathogen-driven declines in animal populations are increasingly regarded as a major conservation issue. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by devil facial tumor disease, a unique transmissible cancer. The disease is transmitted through direct transfer of tumor cells, which is possible because the genetic diversity of Tasmanian devils is low, particularly in the major histocompatibility complex genes of the immune system. The far northwest of Tasmania now holds the last remaining disease-free wild devil populations. The recent discovery of unique major histocompatibility complex genotypes in the northwestern region of Tasmania has raised the possibility that some animals may be resilient to the disease. We examined the differences in the epidemiology and population effects of devil facial tumor disease at 3 well-studied affected sites in eastern Tasmania and 1 in western Tasmania (West Pencil Pine). In contrast to the 3 eastern sites, there has been no rapid increase in disease prevalence or evidence of population decline at West Pencil Pine. Moreover, this is the only onsite at which the population age structure has remained unaltered 4 years after the first detection of disease. The most plausible explanations for the substantial differences in population effects and epidemiology of the disease between eastern and western sites are geographic differences in genotypes or phenotypes of devils and functional differences between tumor strains in the 2 regions. We suggest that conservation efforts focus on identifying whether either or both these explanations are correct and then, if resistance alleles exist, to attempt to spread the resistant alleles into affected populations. Such assisted selection has rarely been attempted for the management of wildlife diseases, but it may be widely applicable.  相似文献   

5.
Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale‐habitat models and assumed ship‐strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship‐strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws. Evaluación del Riesgo de Colisiones de Barcos y Ballenas en la Planificación Marina Espacial  相似文献   

6.
Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long‐term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry‐over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white‐nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free‐ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry‐over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号