首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
Logging, Conifers, and the Conservation of Crossbills   总被引:1,自引:0,他引:1  
A survey of the forestry literature shows that as the age and area of coniferous forests decline, decreased conifer seed production and increased frequencies of cone failures can be expected. This would, in turn, cause declines in crossbills ( Loxia ), which specialize on the seeds held in conifer cones. In western North America, at least five different species of Red Crossbills ( L. curvirostra ) have recently been distinguished (Groth 1990); each specializes on a different species or even a single variety of conifer (Benkman 1993). Measures for conserving this diversity of crossbills include protecting mature and old-growth stands, and increasing rotation ages throughout the range of each of the required conifers. These recommendations are not unique to crossbills, but rather the loss of crossbill diversity is another reason to employ such measures.  相似文献   

5.
6.
7.
Abstract: The global amphibian crisis has resulted in renewed interest in captive breeding as a conservation tool for amphibians. Although captive breeding and reintroduction are controversial management actions, amphibians possess a number of attributes that make them potentially good models for such programs. We reviewed the extent and effectiveness of captive breeding and reintroduction programs for amphibians through an analysis of data from the Global Amphibian Assessment and other sources. Most captive breeding and reintroduction programs for amphibians have focused on threatened species from industrialized countries with relatively low amphibian diversity. Out of 110 species in such programs, 52 were in programs with no plans for reintroduction that had conservation research or conservation education as their main purpose. A further 39 species were in programs that entailed captive breeding and reintroduction or combined captive breeding with relocations of wild animals. Nineteen species were in programs with relocations of wild animals only. Eighteen out of 58 reintroduced species have subsequently bred successfully in the wild, and 13 of these species have established self‐sustaining populations. As with threatened amphibians generally, amphibians in captive breeding or reintroduction programs face multiple threats, with habitat loss being the most important. Nevertheless, only 18 out of 58 reintroduced species faced threats that are all potentially reversible. When selecting species for captive programs, dilemmas may emerge between choosing species that have a good chance of surviving after reintroduction because their threats are reversible and those that are doomed to extinction in the wild as a result of irreversible threats. Captive breeding and reintroduction programs for amphibians require long‐term commitments to ensure success, and different management strategies may be needed for species earmarked for reintroduction and species used for conservation research and education.  相似文献   

8.
9.
Roads, Development, and Conservation in the Congo Basin   总被引:16,自引:0,他引:16  
Abstract: Road density is closely linked to market accessibility, economic growth, natural resource exploitation, habitat fragmentation, deforestation, and the disappearance of wildlands and wildlife. Research in the Republic of Congo shows that roads established and maintained by logging concessions intensify bushmeat hunting by providing hunters greater access to relatively unexploited populations of forest wildlife and by lowering hunters' costs to transport bushmeat to market. Reconciling the contrary effects of roads on economic development and biodiversity conservation is one of the key challenges to wildlife managers in all nations. As the Democratic Republic of Congo prepares to reconstruct its almost completely collapsed road system, the government, donors, and conservation organizations have a unique opportunity to strategically prioritize investment in segments of the network that would maximize local and national economic benefits while minimizing adverse effects on forest wildlife.  相似文献   

10.
11.
12.
13.
14.
15.
Climatic Change, Wildfire, and Conservation   总被引:11,自引:0,他引:11  
Abstract:  Climatic variability is a dominant factor affecting large wildfires in the western United States, an observation supported by palaeoecological data on charcoal in lake sediments and reconstructions from fire-scarred trees. Although current fire management focuses on fuel reductions to bring fuel loadings back to their historical ranges, at the regional scale extreme fire weather is still the dominant influence on area burned and fire severity. Current forecasting tools are limited to short-term predictions of fire weather, but increased understanding of large-scale oceanic and atmospheric patterns in the Pacific Ocean (e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation) may improve our ability to predict climatic variability at seasonal to annual leads. Associations between these quasi-periodic patterns and fire occurrence, though evident in some regions, have been difficult to establish in others. Increased temperature in the future will likely extend fire seasons throughout the western United States, with more fires occurring earlier and later than is currently typical, and will increase the total area burned in some regions. If climatic change increases the amplitude and duration of extreme fire weather, we can expect significant changes in the distribution and abundance of dominant plant species in some ecosystems, which would thus affect habitat of some sensitive plant and animal species. Some species that are sensitive to fire may decline, whereas the distribution and abundance of species favored by fire may be enhanced. The effects of climatic change will partially depend on the extent to which resource management modifies vegetation structure and fuels.  相似文献   

16.
Species, Data, and Conservation Planning   总被引:7,自引:0,他引:7  
  相似文献   

17.
18.
19.
Abstract:  Concerns have been raised regarding the potential adverse effects on biological diversity of the use of living modified organisms (LMOs, which are commonly known by similar terms such as genetically modified organisms). At the international level these concerns are addressed in part by an agreement known as the Cartagena Protocol on Biosafety and include potential toxic effects of insect-resistant crops on nontarget organisms and potential ecological effects of gene flow from modified crops, fish, microorganisms, or insects to wild species or counterparts. We reviewed the protocol's main provisions, including those dealing with risk assessment and risk management, decision making on imports, documentation accompanying shipments, and liability resulting from damages caused by LMOs. A medium-term program of work has been adopted by the parties, which includes the potential contribution of conservation biologists to delivering capacity building, developing risk assessment guidance, evaluating mechanisms of potential ecological damages from LMOs, and other issues. Conservation biologists and other experts have opportunities to influence the negotiations and implementation of the protocol by providing inputs at meetings, offering expertise to governments and organizations, and participating in or developing relevant projects and initiatives. Involvement of conservation biologists in the implementation and further development of the protocol would contribute to its effectiveness.  相似文献   

20.
Abstract: The California Gnatcatcher (   Polioptila californica ) has become a flagship species in the dispute over development of southern California's unique coastal sage scrub habitat, a fragile, geographically restricted ecosystem with high endemism. One aspect of the controversy concerns the status of the subspecies of this bird in southern California coastal sage scrub that is currently listed as threatened under the U.S. Endangered Species Act. To investigate the recent population history of this species and the genetic distinctiveness of subspecies and to inform conservation planning, we used direct sequencing of mitochondrial DNA (mtDNA) for 64 individuals from 13 samples taken throughout the species' range. We found that coastal sage scrub populations of California Gnatcatchers are not genetically distinct from populations in Baja California, which are dense and continuously distributed throughout the peninsula. Rather, mtDNA sequences from this species contain the signatures of population growth and support a hypothesis of recent expansion of populations from a southern Baja California refugium northward into the southern coastal regions of California. During this expansion, stochastic events led to a reduction in genetic variation in the newly occupied range. Thus, preservation of coastal sage scrub cannot be linked to maintaining the genetic diversity of northern gnatcatcher populations, despite previous recognition of subspecies. Our study suggests that not all currently recognized subspecies are equivalent to evolutionarily significant units and illustrates the danger of focusing conservation efforts for threatened habitats on a single species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号