首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用颗粒物粒径谱仪和单颗粒气溶胶质谱仪等,对南宁市2016年12月5~11日大气污染过程进行实时监测,分析颗粒物粒径分布特征、化学组分及其污染来源.结果表明,观测期间南宁市20 nm~10μm颗粒物数浓度粒径主要集中在23~395 nm之间,主峰值出现在100 nm左右.期间有3次新粒子生成现象,下午14:00~18:00有30 nm左右新粒子开始生成,晚20:00~次日06:00碰并长大到40~110 nm左右,3次新粒子生成过程受机动车尾气一次排放的污染影响.对污染期间细颗粒物化学成分在线溯源分析发现,污染期间有大量的二次反应颗粒物生成,判定颗粒物来源主要有生物质燃烧源、扬尘源和燃煤源,其中,远距离传输对生物质燃烧源有贡献.  相似文献   

2.
通过对沿海城市南通市区颗粒物的质量浓度及其化学组成分析,了解沿海城市不同粒径颗粒物的质量浓度变化趋势、化学组成特征,为进一步定量解析颗粒物的来源奠定基础。  相似文献   

3.
卞逸舒  银燕  王红磊  陈魁 《环境科学》2020,41(3):1056-1066
为了研究华东背景地区大气单颗粒的理化特性,利用单颗粒飞行时间质谱仪(SPAMS)于2012年9月5日至10月28日在黄山对大气颗粒物进行了观测,并结合Hysplit后向轨迹模式探究了不同气团对颗粒物性质的影响.结果表明,黄山地区颗粒物可分为老化碳(Aged-EC)、富钾(K)、元素碳-有机碳混合物(ECOC)、有机碳(OC)、钠-钾混合物(NaK)、元素碳(EC)、元素碳-重金属混合物(ECHM)、重金属(HM)、矿物质(Minerals)共9类,其中Aged-EC占比最高,K其次,且含碳颗粒物老化程度较为严重.含碳颗粒物Aged-EC、 ECOC和OC集中在积聚模态(0.2~1.4μm),HM、 NaK和Minerals则集中于粗粒子模态(>1.4μm).除K、 ECHM和ECOC外,较高风速下不利于颗粒物的累积;相对湿度越高,含碳颗粒物的占比越大,而K、 OC、 Minerals和NaK的占比越小.聚类分析结果表明,采样时段内黄山地区主要受西北气团、海洋气团和局地气团影响.周边地区的工业排放、燃煤等活动是Aged-EC的首要贡献源.  相似文献   

4.
依据实际监测数据,分析了贵阳市城区冬夏两季颗粒物(以PM10为主)的质量浓度分布特征、粒径分布特征和化学组成特征。由于冬季燃煤排放烟尘量多,近地面大气稳定度高,细微颗粒不易向高空扩散,因此贵阳市冬季各个监测点的PM10浓度都较夏季高;夏季较冬季空气扩散能力强,颗粒物易向高空扩散,地面颗粒物浓度较低,尤其是细颗粒物的浓度,因此冬季细颗粒物的比例明显增加;监测期间颗粒物的主要化学组分是TC、SO4^2-、Si、NO3^-、Al和Ca,除太慈桥点外,其它4个点的多环芳烃质量含量均是冬季大于夏季,环科院冬夏季和监测站夏季都是细颗粒物中的多环芳烃质量含量要高于粗颗粒物的,监测站冬季是粗颗粒物中的多环芳烃质量含量要高于细颗粒物的。  相似文献   

5.
朱淑贞  佟洁  鲍丰  孙浩 《环境科学》2023,44(1):20-29
分析了2019~2020年秋冬季廊坊市北部、市区和南部这3个站点的大气细颗粒物及其化学组成.空间分布上,PM2.5浓度整体为:南部>市区>北部.PM2.5主要成分为有机物、硝酸盐、硫酸盐、铵盐、矿物组分、氯离子和元素碳,分别占PM2.5的质量分数为25.4%、21.5%、11.0%、11.5%、13.7%、3.5%和5.8%,金属元素及其他物质的质量分数分别为0.3%和7.2%;二次无机盐浓度呈现市区(28.7μg·m-3)高于北部(28.0μg·m-3)和南部(26.8μg·m-3)郊区的变化特征,而有机物(其浓度分别为16.6、13.0和18.5μg·m-3,由北向南,下同)、矿物组分(9.6、6.7和9.7μg·m-3)、氯盐(2.0、2.0和2.8μg·m-3)和元素碳(3.6、3.2和4.3μg·m-3)浓度呈现南部和北部郊区高于市区的变化特征.随...  相似文献   

6.
刘子锐  孙扬  李亮  王跃思 《环境科学》2011,32(4):913-923
为探索奥运和后奥运时段北京地区大气颗粒物质量浓度和数浓度变化规律及其主要影响因素,于2008-08-08~2008-10-07期间,在中国科学院大气物理研究所325 m气象观测塔附近的办公楼楼顶使用微量振荡天平(TEOM)和空气动力学粒谱仪(APS)在线实时测量颗粒物质量浓度和数浓度,同时结合地面气象资料和HYSPLIT轨迹模式对颗粒物的来源和传输过程进行了探讨. 结果表明,奥运期间北京大气颗粒物粗细粒子质量浓度(PM2.5~10和PM2.5)平均值分别为(23.1±1.6) μg·m-3和(55.5±7.3)μg·m-3,比非奥运时期分别降低18.2%和16.0%,比非源控制时期分别降低22.3%和18.0%;而奥运期间粗细粒子数浓度(PN2.5~10和PN0.5~2.5)平均值分别为(15±1)个·cm-3和(3138±567)个·cm-3,比非奥运时期分别降低23.4%和27.5%,比非源控制时期分别降低29.5%和34.3%. 观测期间风速、相对湿度和前1 d的降水与颗粒物质量浓度和数浓度存在显著线性关系,逐步回归分析结果显示,风速和相对湿度可以解释细粒子质量浓度和数浓度变化的42%和53%,而风速和前1 d的降雨则可以解释粗粒子质量浓度和数浓度变化的21%和39%;观测期间北京大气颗粒物主要受保定、石家庄等偏南地区输送的影响,偏南弱气流使北京大气细粒子质量浓度和数浓度迅速增加,而偏北强气流使区域大气粗细粒子得到彻底清除,体现了北京地区大气粗粒子受局地排放控制而细粒子受区域污染输送的特征. 对比观测期间颗粒物累积清除的2次典型过程发现,气象因素影响颗粒物浓度值波动,而局地源排放减少和区域输送减弱则使颗粒物粗细粒子浓度显著降低,北京及周边省(市、区)协同减排是保障奥运期间优质空气质量的主要原因.  相似文献   

7.
西安作为汾渭平原地区最大的城市,大气颗粒物污染形势严峻.2017年夏季期间,在西安市浐灞生态园区运用气溶胶化学组分监测仪,对大气亚微米颗粒物中的非难挥发性组分(NR-PM1)进行了在线监测.观测期间NR-PM1的平均质量浓度为(30.1?±?15.4)μg???m?3.其中有机物含量最高,占NR-PM1总质量浓度的63...  相似文献   

8.
通过采样分析,研究了不同月份各采样点TSP质量浓度、同一时间各采样点TSP和PM10质量浓度,并对桂林市大气颗粒物中无机离子(Cl-、NO-3、SO2-4、K+、Na+、Ca2+、Mg2+、NH4+)进行定量分析测定。结果表明:桂林市大气颗粒物TSP质量浓度在11月要高于8月,3个监测点TSP日均值分别为0.2213,0.2775,0.1301 mg/m3;TSP与PM10质量浓度的相关系数为0.7406,PM10/TSP比值达到0.71以上,颗粒物构成基本相同。桂林市大气颗粒物中水溶性无机离子主要以SO2-4,Cl-,Ca2+,NH4+,Na+和K+为主,桂林市第八中学、八里街第一小学、建干路三采样点的无机离子组分状态大体相同,但存在个体差异。  相似文献   

9.
10.
南京市生活区夏秋季节大气颗粒物垂直分布特征   总被引:3,自引:0,他引:3  
文章实验研究了2008年7月24日-28日(夏季)和2008年10月13日-17日(秋季)南京市河西生活区距地面1.5 m、54 m和80 m高度处大气颗粒物质量浓度垂直分布特征。夏季和秋季监测结果的对比分析表明:随着高度的增加,采样期间夏季和秋季的PM10和PM2.5平均质量浓度均呈现逐渐减小的趋势,其中秋季衰减幅度明显比夏季小,而且秋季采样期间PM10和PM2.5平均质量浓度远远高于夏季;另一方面,夏秋两季不同尺度颗粒物浓度的相对含量也发生了明显变化,相比于夏季1.5 m高度处秋季细颗粒物的所占比例明显增加,而80 m处却明显降低。  相似文献   

11.
成都市大气颗粒物粒径分布及其对能见度的影响   总被引:1,自引:0,他引:1  
使用环境颗粒物分析仪(GRIMM180)对成都市2018年10月—2019年9月0.25~32 μm的大气颗粒物数浓度粒径分布进行观测,结合细颗粒物(PM2.5)质量浓度以及相对湿度(RH)、能见度、降水量等气象要素数据,分析了成都市大气颗粒物粒径分布及其与能见度的关系.结果表明,观测期间成都市大气颗粒物以细粒子为主,0.25~0.5 μm的粒子数浓度占总数浓度的97.75%,数浓度谱呈单峰分布,2018年秋季、2019年夏季表面积谱呈双峰分布,2018年冬季、2019年春季表面积谱呈三峰,体积谱均为三峰分布;在不同RH区间,PM2.5质量浓度及数浓度均与能见度呈负相关,且其中0.25~0.5 μm粒径段的细颗粒物因为对可见光波段的米散射效应而对能见度产生较大影响;在不同RH情况下,不同粒径段颗粒物数浓度对能见度的影响程度有所差别:在低RH(<70%)下,0.25~0.3 μm粒径段粒子数浓度对能见度影响最大;在中等RH(70%~80%)下,0.3~0.5 μm粒径段粒子数浓度对能见度的影响最大;而在高RH(>80%)下,0.3~0.5 μm和0.5~1 μm粒径段粒子数浓度对能见度影响相当.  相似文献   

12.
大气颗粒物具备一定的吸湿性、吸附性、吸光性与散射性等,均会对人类、环境、气候等方面产生一定的不良影响。单颗粒分析法可以提供更多的颗粒信息,同时可以减少分析单颗粒的时间,保证能够单颗粒分析的准确性。现阶段,此种方法在大气颗粒物气候效应、环境效应、生态健康效应、颗粒物源解析等方面得到了普遍的应用。本文主要对单颗粒分析法的应用现状进行分析,阐述其发展趋势,促进其技术水平的不断提高。  相似文献   

13.
青岛大气颗粒物数浓度变化及对能见度的影响   总被引:6,自引:5,他引:6  
为研究青岛地面大气颗粒物数浓度的变化及对能见度的影响,2010年9月~2011年8月使用便携式light house激光粒子计数器进行了大气颗粒物数浓度观测,利用Hysplit模式计算大气颗粒物的后向轨迹,运用统计分析方法初步探讨了气象因子对大气颗粒物数浓度和能见度的影响.结果表明,青岛大气颗粒物数浓度冬春最高,秋季次之,夏季最低;源自新疆、甘肃一带的气团颗粒物数浓度偏高,而来自于东北方向及海上的大气颗粒物数浓度较低;大气颗粒物数浓度变化与风速、相对湿度和混合层高度的变化呈现较好的负相关关系.当气团来源于西或西北方向,地面风向为南到东南风且混合层高度较低时,细粒子数浓度较高,容易出现低能见度现象.  相似文献   

14.
15.
2011年11月~2012年8月,采用WPS宽范围粒径谱仪在北京地区连续监测10nm~10μm间不同粒径大气颗粒物数浓度,并同步记录气象参数.结果表明,颗粒物数浓度均值为25014个/cm3,多呈单峰或双峰模式分布,其中冬季均值为31007个/cm3,春季23152个/cm3,夏季20882个/cm3,冬季明显高于其他季节.爱根核模态及积聚模态均呈现冬季高、春夏低的态势;核模态春季显著高于其他季节.各气象因素中,风速影响最为显著,粒径大于20nm颗粒物数浓度与风速呈反比.核模态与爱根核模态粒子数浓度在交通早高峰、正午与晚间高于其他时段,积聚模态粒子数浓度变化则相对平缓,夜间显著升高.  相似文献   

16.
17.
北京夏季高温高湿和降水过程对大气颗粒物谱分布的影响   总被引:26,自引:8,他引:26  
2004-07-13~2004-08-23使用TDMPS-APS系统在线测量颗粒物的数浓度谱分布,并于07-16~07-18选取了高温闷热夜晚、日间高温高湿和雨后晴朗干洁3种天气条件,使用多级串联撞击式采样器(MOUDI)测量颗粒物的质量浓度谱分布,结果表明,高温高湿天气条件下颗粒物的污染、尤其细粒子污染严重,导致很低的能见度(2.5km);PM1.8和PM10的质量浓度分别为170.68μg/m3和249.35μg/m3,细粒子质量浓度占PM10的68%;粒径为50~100nm颗粒物的数浓度最高,为2×104~3×104个/cm3;降雨过程对粗粒子和细粒子均有去除作用,对细粒子的去除作用尤为明显;降雨后PM10和PM1.8浓度分别比降雨前降低3倍和6倍;降雨过后的晴朗干洁天气有利于新粒子(3~20nm)的生成,生成的新粒子快速长大到50~100nm;随着污染物的累积,以后几天内又变为污染天气.  相似文献   

18.
为研究京津冀地区雾霾成因,以Y-12(运-12)飞机为大气颗粒物观测平台,对2016年夏季京津冀中部大气颗粒物污染特征进行了观测研究.结果表明,天津市颗粒物数浓度垂直分布特征为1 500 m(以下均为标准气压高度)以下呈单峰分布,1 500 m以上呈单调下降,峰值均出现在0.35~0.40 μm之间,峰值的最大值出现在900 m左右;颗粒物体积浓度谱呈三峰分布,分别在0.30~0.40、0.50~0.60和1.00~2.00 μm之间,峰值的最大值出现在450 m左右.天津市、保定市和衡水市600与2 400 m数浓度谱分布特征为单调下降和单峰分布并存;600 m表面积浓度谱呈三峰分布,分别在0.30~0.40、0.50~0.60和0.90~1.00 μm之间;2 400 m表面积浓度谱呈双峰分布,分别在0.30~0.40和0.50~0.60 μm之间;600与2 400 m体积浓度谱均呈三峰分布,分别在0.30~0.40、0.50~0.60和1.00~3.00 μm之间.天津市大气颗粒物数浓度谱峰值的最大值出现在900 m左右,说明逆温层对气溶胶累积的形成有重要影响.城市间数浓度谱峰值高低受地面颗粒物质量浓度大小影响.京津冀中部大气颗粒物表面积浓度谱在600 m呈三峰分布,在2 400 m呈双峰分布,可能是因为2 400 m空中以细粒子为主.京津冀中部大气颗粒物体积浓度谱在600与2 400 m空中均为三峰分布,而国外为双峰分布,发现粗粒子峰值粒径范围差别较大,这是由于国内PM2.5在PM10中占比较大.研究显示,京津冀中部600和1 200 m大气颗粒物多来源于山东、河南,经近地面输送;2 400 m大气颗粒物多来源于内蒙古地区,经高空和近地面两种途径输送.   相似文献   

19.
针对现有污染源单颗粒质谱成分谱较少且缺乏对比总结的问题,本论文收集了工艺过程源、扬尘源、机动车尾气源、燃煤源和生物质燃烧源的单颗粒质谱图数据,使用聚类算法分析了各源类单颗粒物的主要化学组成特征的差异性.结果表明工艺过程源和燃煤源颗粒物均含有OC类、矿物质类、EC类、重金属类、富钾/左旋葡聚糖/硫酸盐硝酸盐类、OCEC类,但各颗粒类型的占比有明显差异,燃煤源中EC类占比明显高于工艺过程源而重金属类占比低于工艺过程源.生物质燃烧源主要由OC类、其他有机物类、富钾/左旋葡聚糖/硫酸盐硝酸盐类和OCEC类组成.扬尘颗粒的主要类型为矿物质类.从单颗粒化学组成上看,工艺过程源排放的有机颗粒中OC常与SO42-内混,元素碳颗粒中EC与NO3-或SO42-内混.燃煤源排放的碳质颗粒中EC、OC成分往往与NO3-和SO42-或者单独与SO42-...  相似文献   

20.
广州城区夏季大气颗粒物数浓度谱分布特征   总被引:6,自引:1,他引:6       下载免费PDF全文
于2013年6月2日—7月15日,利用扫描迁移性粒谱仪(SMPS)对广州城区大气17~800 nm的粒子谱进行了连续观测,同时结合在线小时ρ(PM2.5)及气象数据,对颗粒物污染特征进行了分析. 结果表明:观测期间,凝结核模态粒子、爱根核模态粒子、积聚模态粒子的数浓度范围分别为68~7 687、1 009~47 724、238~14 781 cm-3.平均数浓度谱及体积谱均呈单峰分布,峰值分别出现在50和300 nm左右. 根据双模态对数正态分布模型对平均数浓度谱拟合的结果可知,爱根核模态粒子和积聚核模态粒子的几何平均粒径分别为48和144 nm. 颗粒物数浓度及其谱分布日变化特征明显,在交通高峰及太阳辐射较强的时间段均出现峰值. 在观测阶段,粒子增长现象频繁发生,推测大气光化学反应引起的气-粒转化是广州城区夏季大气颗粒物的重要来源. 7月12—13日广州城区发生了一次典型的大气污染过程,ρ(PM2.5)由18 μg/m3增至112 μg/m3,能见度降至8 km. 在该时间段,积聚模态粒子体积分数与ρ(PM2.5)变化一致,R2(相关系数)达到了0.85. 后向轨迹分析表明,污染气团主要来自于西南方向,在陆地停留时间较长.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号