首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND, AIMS AND SCOPE: Chromium enters into the aquatic environment as a result of effluent discharge from steel works, electroplating, leather tanning industries and chemical industries. As the Cr(VI) is very harmful to living organisms, it should be quickly removed from the environment when it happens to be contaminated. Therefore, the aim of this laboratory research was to develop a rapid, simple and adaptable solvent extraction system to quantitatively remove Cr(VI) from polluted waters. METHODS: Aqueous salt-solutions containing Cr(VI) as CrO4(2-) at ppm level (4-6 ppm) were prepared. Equal volumes (5 ml) of aqueous and organic (2-PrOH) phases were mixed in a 10 ml centrifuge tube for 15 min, centrifuged and separated. Concentrations of Cr(VI), in both the aqueous and organic phases, were determined by atomic absorption spectrometry. The effects of salt and acid concentrations, and phase-contact time on the extraction of Cr(VI) were investigated. In addition, the extraction of Cr(VI) was assessed in the presence of tetramethylammonium chloride (TMAC) in 2-PrOH phase. Effects of some other metals, (Cd(II), Co(II), Cu(II), Ni(II) and Zn(II)), on the extraction of Cr(VI) were also investigated. RESULTS AND DISCUSSION: The Cr(VI) at ppm level was extracted quantitatively by salting-out the homogeneous system of water and 2-propanol(2-PrOH) using chloride salts, namely CaCl2 or NaCl, under acidic chloride media. The extracted chemical species of Cr(VI) was confirmed to be the CrO3Cl-. The ion-pair complex extracted into the organic phase was rationalized as the solvated ion-pair complex of [2-PrOH2+, CrO3Cl-]. The complex was no longer stable. It implied the reaction between extracted species. Studies revealed that salts and acid directly participated in the formation of the above complex. Use of extracting agents (TMAC) didn't show any significant effect on the extraction of Cr(VI) under high salting-out conditions. There is no significant interference effect on the extraction of Cr(VI) by the presence of other metals. The Cr(VI) in the organic phase was back-extracted using an aqueous ammonia solution (1.6 mol dm(-3)) containing 3 mol dm(-3) NaCl. The extraction mechanism of Cr(VI) is also discussed. CONCLUSIONS: Salting-out of homogeneous mixed solvent of 2-propanol can be employed to extract Cr(VI) quantitatively, as an ion-pair of [2-PrOH2+ * CrO3Cl-] solvated by 2-PrOH molecules. Then, the complex becomes 'solvent-like' and is readily separated into the organic phase. The increase of Cl- ion concentration in the aqueous phase favors the extraction. The 2-PrOH, salts and acid play important roles in the extraction process. There is no need to use an extracting agent at a high salting-out condition. RECOMMENDATIONS AND PERSPECTIVES: Chromium(VI) must be quickly removed before it enters into the natural cycle. As the 2-PrOH is water-miscible in any proportion, ion-pairing between 2-PrOH2+ and CrO3Cl- becomes very fast. As a result, Cr(VI) can easily be extracted. Therefore, the method is recommended as a simple, rapid and adaptable method to quickly separate Cr(VI) from aqueous samples.  相似文献   

2.
Due to its widespread industrial use, chromium is considered a dangerous environmental pollutant. It is known to inhibit plant growth and development. The present study provides the first evidence of the toxicity of this metal on the male haploid generation of a higher plant. Both Cr(III) and Cr(VI) species, supplied as CrCl(3) and CrO(3), respectively, exerted a strong dose-dependent inhibitory effect on kiwifruit pollen tube emergence and growth. Cr(III) resulted more effective than Cr(VI) in the 16-75microM interval; moreover, complete inhibition of germination was attained at much lower doses than Cr(VI). Also tube morphology was affected. While the plasma membrane was still undamaged in the large majority of the treated pollen grains, dramatic ultrastructural alterations were induced by chromium including chromatin condensation, swelling of mitochondria, cytoplasmic vacuolization, and perturbed arrangement of endoplasmic reticulum cisternae. Thus, it seems that the impact of the two chromium species on kiwifruit pollen may result in severe compromission of both essential structures and functions of the male gametophyte.  相似文献   

3.
Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz   总被引:2,自引:0,他引:2  
Zhang XH  Liu J  Huang HT  Chen J  Zhu YN  Wang DQ 《Chemosphere》2007,67(6):1138-1143
Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water.  相似文献   

4.
Wang KS  Huang LC  Lee HS  Chen PY  Chang SH 《Chemosphere》2008,72(4):666-672
Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.  相似文献   

5.
In soil, chromium can be found in two main valence states: hexavalent Cr(VI) and trivalent Cr(III). In this study, we investigated the impact of Cr on photosynthetic gas exchange, photosystem II (PSII) activity, Cr translocation and accumulation, proline content and alkaloids production, i.e. scopolamine and hyoscyamine, in Datura innoxia. Cr uptake was influenced by its oxidation state and its concentration in growth medium. The plant roots were determined as being the main organ of Cr accumulation. Cr(VI) was more toxic than Cr(III) as indicated by reduction in plant biomass and net photosynthesis. The stomatal conductance showed a similar trend to that of photosynthetic capacity. Cr(III) and Cr(VI) had a different impact on substomatal CO(2) concentration then Cr toxicity was related to its oxidation states. In plants stressed with a Cr(VI) excess, a down regulation of PSII activity was observed with an impairment of photochemical activity. Indeed, the maximum quantum yield of PSII (F(v)/F(m)), the quantum yield of PSII (PhiPSII) and the efficiency of excitation capture by open centers (F'(v)/F'(m)) decreased. Cr(III) had little effects on PSII primary photochemistry, whatever its form induces an increase of scopolamine content without changes in hyoscyamine content in leaves of D. innoxia. These results provide that chromium contamination can change the secondary metabolites composition of leaves, thereby, impacting the quality, safety and efficacy of natural plant products synthesized by D. innoxia plants.  相似文献   

6.
BACKGROUND, AIM, AND SCOPE: Chromium(VI) resistance and its association with extracellular polymeric substance (EPS) concentration in cyanobacteria was investigated. Increased EPS concentration was associated with Cr(VI) resistance. The most resistant isolate, Chroococcus sp. H(4), secreted the most EPS (427 mg/L). MATERIALS AND METHODS: EPS concentration of the two most resistant isolates (Chroococcus sp. H(4) and Synechocystis sp. S(63)) was investigated following exposure to 15 and 35 ppm Cr(VI). The composition of EPS produced by Chroococcus sp. H(4) following exposure to 10 ppm Cr(VI) was analyzed using high-performance liquid chromatography. Control EPS was composed of glucose (99%) and galactronic acid (1%); in the presence of 10 ppm Cr(VI), EPS composition changed to glucose (9%), xylose (75%), rhamnose (14%), and galacturonic acid (2%). RESULTS AND DISCUSSION: Results indicated that (1) exposure to elevated concentrations of Cr(VI) affected the composition of EPS produced by Chroococcus sp. H(4), and (2) there was a correlation between Cr(VI) resistance and EPS concentration in some cyanobacteria.  相似文献   

7.
Choo TP  Lee CK  Low KS  Hishamuddin O 《Chemosphere》2006,62(6):961-967
This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.  相似文献   

8.
A study on the Cr(VI) removal from aqueous solutions by steel wool   总被引:2,自引:0,他引:2  
The reduction of Cr(VI) by steel wool and the precipitation of reduced chromium by CaCO(3) powder and NaOH solution were investigated in continuous and batch systems, respectively. The effects of acid and initial Cr(VI) concentrations, volumetric rate and temperature of solution on Cr(VI) reduction were studied. The results showed that the reduction of Cr(VI), to a large extent, depended on, and increased with, acid concentration. The Cr(III) and iron ions in the reduced solution were completely precipitated by using NaOH solution at appropriate alkaline conditions. It was concluded that CaCO(3) powder could be used as a cheap precipitant for Cr(III) ions. But the iron ions in the reduced solution could not be fully removed by using this precipitant.  相似文献   

9.
Attempt has been made to study the accumulation behaviour of a common plant, Mung bean (Vigna radiata) towards Cr(III) and Cr(VI) to have an insight on the migration and bio-magnification of Cr. For this purpose healthy germinated Mung bean seeds were sown in the sand in the presence of Hoagland's nutrient solution containing measured amount of K(2)(51)Cr(2)O(7) and (51)Cr(NO(3))(3).9H(2)O. Growth rate was also studied in the presence and absence of phosphate salts in the medium. It has been found that the transfer of chromium from soil to plant is significantly low (maximum 5% for both Cr(III) and Cr(VI)). Maximum accumulation of Cr occurs in the root with respect to the total chromium accumulation by the plant. Other parts of the Mung bean plant, e.g. cotyledons, shoot and leaves, show negligible accumulation. Therefore, the chance of direct intake of Cr through food as well as through the grazing animals to human body is less.  相似文献   

10.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

11.
Park D  Yun YS  Ahn CK  Park JM 《Chemosphere》2007,66(5):939-946
The dead biomass of the brown seaweed, Ecklonia sp., is capable of reducing toxic Cr(VI) into less toxic or nontoxic Cr(III). However, little is known about the mechanism of Cr(VI) reduction by the biomass. The objective of this work was to develop a kinetic model for Cr(VI) biosorption, for supporting our mechanism. The reduction rate of Cr(VI) increased with increasing total chromate concentration, [Cr(VI)], and equivalent concentration of organic compounds, [OCs], and decreasing solution pH. It was found that the reduction rate of Cr(VI) was proportional to [Cr(VI)] and [OCs], suggesting the simple kinetic equation -d[Cr(VI)]/dt=k[Cr(VI)][OCs]. When considering the consumption of organic compounds due to the oxidation by Cr(VI), an average rate coefficient of 9.33 (+/-0.65)microM(-1)h(-1) was determined, at pH 2. Although the function of the pH could not be expressed in a mechanistic manner, an empirical model able to describe the pH dependence was obtained. It is expected that the developed rate equation could likely be used for design and performance predictions of biosorption processes for treating chromate wastewaters.  相似文献   

12.
Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.  相似文献   

13.
XANES study of Cr sorbed by a kitchen waste compost from water   总被引:1,自引:0,他引:1  
Wei YL  Lee YC  Hsieh HF 《Chemosphere》2005,61(7):1051-1060
A kitchen waste compost was used to sorb Cr for various times from water containing either Cr(NO3)3 or CrO3 in different concentrations. Scanning electron microscopy (SEM) results show that the composts have been partially oxidized by Cr(VI) during the sorption experiments. X-ray absorption near edge structure (XANES) simulation suggests that about 54.1-61.0% Cr sorbed on the compost is in form of organic Cr(III) through ionic exchange process with the rest being existent as Cr(NO3)3 in the Cr(III) sorption case; no Cr(OH)3 is observed or expected because the solution pH after sorption experiments is or= 5.94. Moreover, organic Cr(III) represents about 51.7-69.0% of the total sorbed Cr, and the rest (6.1-28.5%) is Cr(VI).  相似文献   

14.
Contamination by chromium (Cr) is widespread in agricultural soils and industrial sites. This heavy metal represents a risk to human health. In order to gain fundamental insights into the nature of the adaptation to Cr excess, the characterisation of physiological indices, including responses of photosynthetic gas exchange and chlorophyll a fluorescence along with changes in mineral nutrient contents and water status were studied in ray grass (Lolium perenne L.). Increased concentrations of Cr(VI) (0-500 microM Cr) in the Co?c and Lessaint nutrient solution were applied. The growth of Lolium perenne is decreased by chromium and the leaves have lost their pigments. Chromium accumulation was greater in roots than in leaves and reached 2450 and 210 microg g(-1) DW, respectively with 500 microM Cr(VI) in nutrient medium. The physiological parameters were severely reduced by this heavy metal. Cr induced toxicity arising from 100 microM Cr(VI) and resulted in a modification of mineral content in roots and leaves, especially for Ca, Mg and Fe. The chromium stress decreased CO2 assimilation rates mainly due to stomatal closure, which reduced water loss by transpiration without decreasing the cellular available CO2. The fluorescence parameters associated with photosystem II (PSII) activity and the photochemical activity are modified by chromium. Non-radiative energy dissipation mechanisms were triggered during stress since non-photochemical quenching was increased and efficiency of excitation capture by open centers was reduced.  相似文献   

15.
Soil humic acids may favour the persistence of hexavalent chromium in soil   总被引:1,自引:0,他引:1  
The interaction between hexavalent chromium Cr(VI), as K2CrO4, and standard humic acids (HAs) in bulk solution was studied using three complementary analytical methods: UV-Visible spectroscopy, X-ray absorption spectroscopy and differential pulse stripping voltammetry. The observed UV-Vis and X-ray absorption spectra showed that, under our experimental conditions, HAs did not induce reduction of Cr(VI) to its trivalent chemical form. The interaction between Cr(VI) and HAs has rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes. The reported results could contribute towards explaining the relative persistence of ecotoxic hexavalent chromium in soils.  相似文献   

16.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   

17.

The phytoaccumulation ability of duckweed Spirodela polyrhiza on manganese (Mn) and chromium (Cr) was assessed by exposing the plant to various concentrations of single or dual metals (5–70 mg L?1 Mn, 2–12 mg L?1 Cr(VI)) under laboratory conditions. The results showed that S. polyrhiza can tolerate Mn at high concentrations of up to 70 mg L?1, and its growth rate was barely affected by Mn. The effects of Cr on S. polyrhiza growth were dose-dependent, and the growth was completely inhibited in the presence of 12 mg L?1 Cr. Analysis of metal content in the plant biomass revealed a high accumulation of Mn (up to 15.75 mg per g of duckweed dry weight). The Cr bioaccumulation (from below detection limit to 2.85 mg Cr (11.84 mg Cr2O7 2?) per g of duckweed dry weight) increased with cultivation time and metal concentration in the medium. Further study with the concurrence of Mn and Cr showed increased toxicity to plant growth and photosynthesis. The metal accumulations in the dual metal treatments were also significantly decreased as compared to the single metal treatments. Nevertheless, the phytoaccumulation of these two metals in S. polyrhiza in the dual metal treatments were still comparable to or higher than in previous reports. Thus, it was concluded that duckweed S. polyrhiza has the potential to be used as a phytoremediator in aquatic environments for Mn and Cr removal.

  相似文献   

18.
Reduction of Cr(VI) by malic acid in aqueous Fe-rich soil suspensions   总被引:1,自引:0,他引:1  
Zhong L  Yang J 《Chemosphere》2012,86(10):973-978
Detoxification of Cr(VI) through reduction by organic reductants has been regarded as an effective way for remediation of Cr(VI)-polluted soils. However, such remediation strategy would be limited in practical applications due to the low Cr(VI) reduction rate. In this study, the catalytic effect of two Fe-rich soils (Ultisol and Oxisol) on Cr(VI) reduction by malic acid was evaluated. As the results shown, the two soils could obviously accelerate the reduction of Cr(VI) by malic acid at low pH conditions, while such catalytic effect was gradually suppressed as the increase in pH. After reaction for 48 h at pH 3.2, Oxalic acid was found in the supernatant of Ultisol, suggesting the oxidization of hydroxyl in malic acid to carboxyl and breakage of the bond between C2 and C3. It was also found that the catalytic reactivity of Ultisol was more significant than that of Oxisol, which could be partly attributed to the fact that the amount of Fe(II) released from the reductive dissolution of Ultisol by malic acid was larger than that of Oxisol. With addition of Al(III), the catalytic effect from Ultisol was inhibited across the pH range examined. On the contrary, the presence of Cu(II) would increase the catalytic effect of Ultisol, which was more pronounced with the increase in pH. This study proposed a potential way for elimination of the environmental risks posed by the Cr(VI) contamination by use of the natural soil surfaces to catalyze Cr(VI) reduction by the organic reductant such as malic acid, a kind of organic reductant originating from soil organic decomposition process or plant excretion.  相似文献   

19.
Measurement of carcinogenic Cr(VI) in ambient PM is challenging due to potential errors associated with conversion between Cr(VI) (a carcinogen) and Cr(III) (an essential nutrient). Cr(III) conversion is a particular concern due to its >80% atomic abundance in total Cr. U.S. Environmental Protection Agency (EPA) method 6800 that uses water-soluble isotope spikes can be used to correct the interconversion. However, whether the enriched Cr(III) isotope spikes can adequately mimic the Cr(III) species originally in ambient PM is unknown. This study examined the water solubility of Cr(III) in ambient PM and discussed its influence on Cr(VI) measurement. Ambient PM10 samples were collected on Teflon filters at four sites in New Jersey that may have different Cr emission sources. The samples were ultrasonically extracted with 5 mL DI-H2O (pH 5.7) at room temperature for 40 min, and then analyzed by ion chromatography–inductively coupled plasma mass spectrometry (IC-ICPMS). Cr(III) was below detection limit (0.06 ng/m3) for all samples, suggesting water-soluble Cr(III) species, such as CrCl3, Cr(NO3)3, and amorphous Cr(OH)3, in the ambient PM were negligible. Therefore, the enriched 50Cr(III) isotope spike (in the form of Cr(NO3)3) could not mimic the original ambient Cr(III). Only the conversion of 53Cr(VI) (in the form of K2CrO4) was taken into account when correcting the interconversion. We then used NaHCO3-pretreated MCE filters (prespiked with enriched isotope species) to measure Cr(VI) in the ambient PM10. The samples were ultrasonically extracted at 60 C pH 9 solutions for 40 min followed by IC-ICPMS analysis. Due to the correction of Cr(VI) reduction, the Cr(VI) concentrations determined by EPA method 6800, 0.26 ± 0.16 (summer) and 0.16 ± 0.11(winter) ng/m3 (n = 64), were significantly greater than those by the external standard curve, 0.21 ± 0.17 (summer) and 0.10 ± 0.07 (winter) ng/m3 (n = 56) (p < 0.01, Student’s t-test). Our study revealed that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species in ambient PM.
ImplicationsAccurate measurement of carcinogenic Cr(VI) in ambient PM is challenging due to conversion between Cr(VI) (a human carcinogen) and Cr(III) (a human essential nutrient). The conversion of Cr(III) is of particular concern due to its dominant presence in total Cr (>80%). This study examined the water solubility of Cr(III) in ambient PM that was collected at four locations in New Jersey. Then we discussed the influence of Cr(III) solubility on the application of EPA method 6800, which utilizes enriched isotope spikes to correct the interconversion. Our results suggested that appropriate application of EPA method 6800 is important because it only applies to soluble fraction of Cr species.  相似文献   

20.
Reduction of hexavalent chromium by ascorbic acid in aqueous solutions   总被引:6,自引:0,他引:6  
Xu XR  Li HB  Li XY  Gu JD 《Chemosphere》2004,57(7):609-613
Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号