首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

2.
The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEMZn-AVS > 0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the foodexposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment + food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.  相似文献   

3.
Roh JY  Choi J 《Chemosphere》2011,84(10):1356-1361
In this study, the effect of organophosphorous (OP) pesticide, fenitrothion (FT), on the non-target organism was investigated using the soil nematode, Caenorhabditis elegans. Toxicity was investigated on multiple biological levels, from organism to molecular levels, such as, immoblity, growth, fertility, development, acetyl cholinesterase (AChE) activity and stress-response gene expressions. FT may provoke serious consequences on the C. elegans population, as it induced significant developmental disturbance. As expected, FT exposure inhibits AChE activity of C. elegans. The increased expression of the cytochrome p450 family protein 35A2 (cyp35a2) gene was also observed in FT exposed worms. To experimentally demonstrate the relationships between organism-level effects and the cyp35a2 gene expression in FT-exposed C. elegans, the integration of the gene expression with biochemical-, and organism level endpoints were attempted using a C. eleganscyp35a2 RNA interference (RNAi) and cyp35a2 mutant (gk317). The 24 h-EC50s of C. elegans on FT exposure were in the order of cyp35a2 RNAi in cyp35a2 mutant (gk317) > cyp35a2 mutant (gk317) > cyp35a2 RNAi in wildtype (N2) > wildtype (N2). The higher EC50 values of cyp35a2 RNAi and cyp35a2 mutant (gk317) compared to that of wildtypeC. elegans strongly supported that cyp35a2 gene plays an important role in the toxicity of FT towards C. elegans. The experiments with cyp35a2 RNAi also indicated that the development disturbance and decreased AChE activity, which were observed in FT exposed wildtype C. elegans were significantly rescued in the cyp35a2 RNAi C. elegans. Overall results suggest that the cyp35a2 may be an important gene for exerting FT toxicity in C. elegans.  相似文献   

4.
In previous work we have shown that the toxicity of nanomaterials to Daphnia spp. differs with the type of nanoparticle either due to the core of the particle or to the way in which a particle suspension is prepared. The purpose of this study was to investigate the toxicity and antioxidant response of Daphnia pulex in relation to a change in surface functionalization of nanomaterials with the same core material, nC60. Despite the lack of acute toxicity for various nC60 suspensions up to 100 ppm concentration, there was a significant production of the toxicity biomarkers glutathione-S-transferase and catalase, at lower concentrations indicating changes in reactive oxygen species. Nanoparticle functionalization significantly affected this response. Oxidative stress markers appear to be a good predictor of potential future toxicity of nanomaterials. Functionalization alters both toxicity and oxidative stress in whole organism assays.  相似文献   

5.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

6.
We investigated the occurrence of three pharmaceutical residues in four wastewater treatment plants (WWTPs) from northern Tunisia. The selected compounds were carbamazepine, naproxen, and ibuprofen; they are among the most commonly prescribed and widely used pharmaceutical agents worldwide. Samples (200?mL) were pre-concentrated using the solid phase extraction (SPE) enrichment procedure and the analysis of the pharmaceuticals was performed with high-performance liquid chromatography (HPLC-UV). The overall procedure provided limits of detection (LOD) lower than 0.5 µg.L?1and recoveries of 78–97%. For the carbamazepine compound, the mean concentrations were 60.58, 93.19, and 132 µg.L?1 for the Bizerte, Jendouba, and Tunis WWTPs, respectively. This pharmaceutical was not detected in the Beja WWTPs. Naproxen and ibuprofens were not detected in the Jendouba WWTP but were found in the three other WWTPs with concentrations ranging from 2.94 to 36.17 µg.L?1 and from 8.02 to 43.22 µg.L?1, respectively. From the obtained data, it seems that these WWTPs are not able to eliminate this kind of micro-pollutants.  相似文献   

7.
The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity.  相似文献   

8.
A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 ± 0.72) and strain S (from 1 to 0.40 ± 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed.  相似文献   

9.
Semifluorinated n-alkanes (SFAs) with carbon chain lengths of 22 to approximately 36 atoms are present in fluorinated ski waxes to reduce the friction between ski base and snow, resulting in a better glide. Semifluorinated n-alkenes (SFAenes) are byproducts in the production process of SFAs and are also found in ski waxes. Snow and soil samples from a ski area in Sweden were taken after a large skiing competition and after snowmelt, respectively, and analyzed for SFAs and SFAenes. Single analyte concentrations in snow (analyzed as melt water) ranged from a few ng L−1 up to 300 μg L−1. ∑SFA concentrations decreased significantly from the start to the finish of the ski trail. Single analyte concentrations in soil ranged up to 9 ng g−1 dw. ∑SFA concentrations in soil did not show a trend along the ski trail. This may be due to the fact that concentrations in soil, although strongly influenced by the competition, reflect inputs during the whole skiing season. The chemical inventory in snow was greater than the inventory in soil for shorter chain SFAs (C22C28) and for all SFAenes. Additionally, a significant change in SFA patterns between snow and soil samples was found. These observations suggested volatilization of shorter chain SFAs and of SFAenes during snowmelt. Evidence for long-term accumulation of SFAs in surface soil over several skiing seasons was not found.  相似文献   

10.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   

11.
This paper compares the dynamics, i.e. the rates of change in element concentrations of young and older lichen thallus parts, of one foliose and one fruticose lichen, during a transplant experiment to a polluted site. Both lichen parts respond to environmental changes. Here, differential accumulation suggests that differential constitution leads to differential uptake and release, and/or the overall behaviour is partly due to internal translocation and regulation mechanisms within the whole lichen. For thallus parts, internal translocation should be taken into account as one more factor affecting lichen “memory length”. Young parts of the thallus presented higher rates of change, but different lichen parts accumulate different elements to different extents. Therefore tissue selection in monitoring may depend on the element of interest, and cannot be made into a generalized approach in survey set-ups: the choice depends on the element.  相似文献   

12.
13.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

14.
The dynamics of the atrazine mineralization potential in agricultural soil was studied in two soil layers (topsoil and at 35-45 cm depth) in a 3 years field trial to examine the long term response of atrazine mineralizing soil populations to atrazine application and intermittent periods without atrazine and the effect of manure treatment on those processes. In topsoil samples, 14C-atrazine mineralization lag times decreased after atrazine application and increased with increasing time after atrazine application, suggesting that atrazine application resulted into the proliferation of atrazine mineralizing microbial populations which decayed when atrazine application stopped. Decay rates appeared however much slower than growth rates. Atrazine application also resulted into the increase of the atrazine mineralization potential in deeper layers which was explained by the growth on leached atrazine as measured in soil leachates recovered from that depth. However, no decay was observed during intermittent periods without atrazine application in the deeper soil layer. atzA and trzN gene quantification confirmed partly the growth and decay of the atrazine degrading populations in the soil and suggested that especially trzN bearing populations are the dominant atrazine degrading populations in both topsoil and deeper soil. Manure treatment only improved the atrazine mineralization rate in deeper soil layers. Our results point to the importance of the atrazine application history on a field and suggests that the long term survival of atrazine degrading populations after atrazine application enables them to rapidly proliferate once atrazine is again applied.  相似文献   

15.
Yan S  Zhou Q 《Chemosphere》2011,85(6):1088-1094
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.  相似文献   

16.
Tire wear particles filed from the treads of end-of-life vehicle tires have been added to sea water to examine the release of Zn and the toxicity of the resulting leachate and dilutions thereof to the marine macroalga, Ulva lactuca. Zinc release appeared to be diffusion-controlled, with a conditional rate constant of 5.4 μg[L(h)1/2]−1, and about 1.6% of total Zn was released after 120 h incubation. Exposure to increasing concentrations of leachate resulted in a non-linear reduction in the efficiency of photochemical energy conversion of U. lactuca and, with the exception of the undiluted leachate, increasing accumulation of Zn. Phototoxicity was significantly lower on exposure to equivalent concentrations of Zn added as Zn(NO3)2, suggesting that organic components of leachate are largely responsible for the overall toxicity to the alga. Given the ubiquity and abundance of TWP in urban coastal sediments, the generation, biogeochemistry and toxicity of tire leachate in the marine setting merit further attention.  相似文献   

17.
The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO2 and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO2, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO2 of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected.  相似文献   

18.
Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.  相似文献   

19.
Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive.Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed.  相似文献   

20.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号