首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paraeuchaeta norvegica was found to be widely distributed in the Norwegian Sea. They were least abundant in north-western areas, but otherwise no clear horizontal patterns appeared with respect to latitude, longitude or water mass. Females and males had similar vertical distributions. The highest concentrations of adults occurred at 400-500 m depth; they largely avoided the upper 50-100 m, even at night. Stages CIV and CV lived shallower in the water column than the adults, with the highest concentration between 100 and 300 m. Stages CII-CIII were most abundant at 50-100 m, while CI was distributed slightly deeper (maxima at 100-200 m). Potential prey were most abundant in the upper 100 m; i.e. shallower than P. norvegica. Numbers of fecal pellets produced by freshly collected adult females were relatively low (estimated at 0.7 pellets per individual on average for the entire sea), with maximal numbers for individuals captured in shallow waters. This suggests food limitation during summer, when food is concentrated in upper waters, and short and light nights limit nocturnal access to the shallow food resources. Pellets mainly contained copepod remains.  相似文献   

3.
T. Ikeda  K. Hirakawa 《Marine Biology》1996,126(2):261-270
Life cycle of the mesopelagic copepod Pareuchaeta elongata was investigated combining laboratory rearing data on the eggs, nauplii, and early copepodites with field growth data on the late copepodites. Examination and incubation at near the in situ temperature (0.5°C) of egg sacs collected from the field indicated that the clutch size was 13 to 24 eggs (mean: 20), hatching time was 39.4d (mean), and hatchability was low (mean: 28.5%). The development time at 0.5°C was 2.4 d for Nauplius Stage 1 (N1), 4.6 d for N2, 6.2 d for N3. 7.4 d for N4, 7.1 d for N5, 20.8 d for N6, 36.7 d for Copepodite Stage 1 (C1) and 65.3 d for C2. From the numerical analysis of seasonal samples collected from the field, the development time was estimated as 1 mo for C3, 2 mo for C4 and 2.5 mo for C5. Thus, the egg hatching time plus the integrated development time by stage was 355 d or nearly 1 yr (i.e. span of one life cycle). Duration of the C6 (adult) was estimated as>2.5 mo. Combining the present data on development times of each stage with published data on the major spawning season (August to October) and ontogenetic migration, a schematic representation of the life cycle of this copepod was developed. Between-stage comparison of wet, dry, and ash-free dry weights of all developmental stages of preserved wild specimens revealed that there is almost no gain in weight during naupliar stages, and the greatest weight increment over the life cycle was during the C4 stage. The present results are compared with those for the same and related species living in other regions.  相似文献   

4.
Many prey species have a genetic predisposition to recognise and respond to predators and can fine-tune their anti-predator behaviour following appropriate experience. Although the Trinidadian guppy ( Poecilia reticulata) has become a model species for the investigation of adaptive behaviour, the extent to which experience mediates predator recognition remains unclear. In this study, we examined the effects of relaxed predation pressure on patterns of anti-predator behaviour in populations differing in evolutionary history. The anti-predator behaviour of wild- and laboratory-born guppies from high- and low-predation localities in Trinidad were compared using three models resembling Crenicichla alta, a dangerous guppy predator, Aequidens pulcher, a less dangerous piscivore, and a snake. Snakes are not known to prey on guppies in Trinidad. Specifically, the following predictions were tested: (1) wild caught fish from the high-predation localities (where guppies co-occur with C. alta and A. pulcher) would respond to the three models according to their perceived level of threat, whereas guppies from the low-predation site would show a reduced response to all of the predator models; (2) high-predation laboratory-reared fish would display a reduced but qualitatively similar response to their wild counterparts; and (3) there would be no behavioural differences between wild- and laboratory-reared low-predation fish. In accordance with these predictions, the results revealed that wild fish originating from high-predation sites responded more strongly to the models than fish from low-predation sites. When reared in the laboratory, guppies from the high-predation population showed a reduced response compared to their wild-caught counterparts, but there was no difference in the behaviour of wild- and laboratory-reared low-predation fish. Model type affected predator inspection behaviour but not schooling tendency, and both wild- and laboratory-reared guppies were more wary of the fish models than the snake. These results suggest that early experience differentially mediates the anti-predator responses of fish from high-risk localities.  相似文献   

5.
In 57 l-m2 samples within a meadow of Halodule wrightii in Bogue Sound, North Carolina, USA, densities of the clams Mercenaria mercenaria and Chione cancellata were positively associated with seagrass cover. Where seagrass was experimentally removed, marked individuals of both clam species exhibited high rates of mortality in fine sand sediments during two successive experiments spanning 13 months. In the unaltered (control) seagrass meadow, M. mercenaria density remained constant over 13 months and C. cancellata density declined at a slower rate than in the unvegetated plots. Seagrass provides these clams with a refuge from whelk (Busycon carica, B. contrarium, and B. canaliculatum) predation, the major cause of mortality and population decline in experimentally unvegetated plots. In 2 factorial field experiments in unvegetated substratum in which densities of M. mercenaria and C. cancellata were varied independently, first over 5 levels (0 X, 1/2X, 1 X, 2 X, 4 X) and subsequently over 4 levels (0 X, 1/4 X, 1 X, 4 X), there was no repeatable intra- or interspecific effect of density on percent survival, or on the rate of any mortality type. Whelk predation fell preferentially on larger size classes of both species, whereas factors which contribute to clam disappearance usually acted more intensely on smaller sizes. Experimental exclusion of large predators by caging demonstrated that even in unvegetated substratum survivorship of both clam species was high in the absence of whelks and other predators. Individuals of C. cancellata live closer to the sediment surface than those of M. mercenaria, which may explain why seagrass does not serve as effectively to protect them from whelk predation. The mechanism of whelk inhibition may depend upon sediment binding by the H. wrightii root mat, which produces a demonstrable decrease in the physical penetrability of surface sediments.  相似文献   

6.
Experimental studies of feeding on zooplankton often involve the use of non-evasive Artemia spp. to represent zooplanktonic prey. Some zooplankton, however, such as copepods, are potentially evasive due to possession of effective predator-avoidance mechanisms such as high-speed escape swimming. In the present study, we compared the efficiencies with which non-evasive (A. salina) and evasive (copepods) zooplankton were captured by a sessile, suspension feeder, the coral-inhabiting barnacle Nobia grandis (Crustacea, Cirripedia). N. grandis specimens and zooplankton used in the present study were collected near Eilat, Israel in 1993. The effect of different flow speeds (from 0 to 14 cm s-1) on captures of the two preys was also investigated. Additionally, we examined the effect of a flow-induced barnacle behavioral switch from active to passive suspension feeding, on zooplankton capture. Two video cameras were used to make close-up, three dimensional recordings of predator-prey encounters in a computer-controlled flow tank. Frame-by-frame video analysis revealed a highly significant difference (P< 0.001) in the efficiency with which A. salina and copepods were caught (A. salina being much more readily captured than copepods). After an encounter with cirri of feeding barnacles, copepods were usually able to swim out of the barnacles capture zone within one video frame (40 ms), by accelerating from a slow swimming speed (approximately 1.85 cm s-1) to a mean escape swimming speed of 18.11 cm s-1 (ca. 360 body lengths s-1). This was not the case for A. salina nauplii, which usually remained in contact with cirri before being transferred to the mouth and ingested. Thus, experimental studies addressing the methodology of organisms feeding on zooplankton should consider that slow-swimming prey like Artemia sp. nauplii may only represent the non-evasive fraction of natural mesozooplankton assemblages.  相似文献   

7.
In the north Atlantic, Meganyctiphanes norvegica feeds predominantly on copepods, including Calanus spp. To quantify its perceptual field for prey, and the sensory systems underlying prey detection, the responses of tethered krill to free-swimming Calanus spp. were observed in 3D using silhouette video imaging. An attack–which occurred despite the krill’s being tethered—was characterized by a pronounced movement of the krill’s antennae towards the target, followed by a propulsion and opening of the feeding basket. Frequency distributions of prey detection distances were significantly different in the light vs. the dark, with median values of 26.5 mm and 19.5 mm, respectively. There were no significant differences in the angles at which prey were detected by krill (relative to the predator’s longitudinal body axis) in the light vs. the dark. Prey detections were symmetrically distributed on either side of the predator, in both light and dark. However, significant asymmetry was found in the dorsal–ventral direction with 80% of the prey detections located below the midline of the krill’s body axis and, given the placement and orientation of the compound eyes, presumably outside its visual field of view. This indicates that, at least under these conditions, vision was not the main sensory modality involved in the detection of active prey by M. norvegica. However, under some circumstances, vision may provide supplemental information. Avoidance responses of copepod prey were nearly twice the velocity of their nominal background swimming speed (153 ± 48 and 85 ± 75 mm s−1, respectively), on average taking them 43 ± 16 mm away from the predator. This is far beyond the krill’s perceptual range, suggesting that the escape reaction provides an effective deterrent to predation (although perhaps less so for free-swimming krill). This information can be used to parameterize models that assess the role of krill as predators in marine ecosystems.  相似文献   

8.
The feeding behaviour ofClupea harengus L. in the light is dependent primarily on prey concentration. In the laboratory the fish feed by biting at low prey concentrations and by filtering at high concentrations. With the brine shrimpArtemia sp. as prey, the concentration required for the onset of filter-feeding was directly dependent on prey size, but the concentration at which 50% of feeding fish were filtering differed little between three sizes of brine shrimp (nauplii, and 2 and 4 mm larvae). When fed onCalanus finmarchicus, however, 50% of fish fed by filtering at concentrations at least six times lower than on any size of brine shrimp. Filter-feeding thresholds forC. finmarchicus were six to ten times lower than for any size ofArtemia sp. and, on the basis of biomass, approximately eight times lower than for equivalent sizedArtemia sp.  相似文献   

9.
The foraging sites selected by an ambush forager can strongly affect its feeding opportunities. Foraging cane toads (Rhinella marina) typically select open areas, often under artificial lights that attract insects. We conducted experimental trials in the field, using rubber mats placed under lights, to explore the influence of substrate color and rugosity on prey availability (numbers, sizes, and types of insects) and toad foraging success. A mat's color (black vs. white) and rugosity (smooth vs. rough) did not influence the numbers, sizes, or kinds of insects that were attracted to it, but toads actively preferred to feed on rugose white mats (50% of prey-capture events, vs. a null of 25%). White backgrounds provided better visual contrast of the (mostly dark) insects, and manipulations of prey color in the laboratory showed that contrast was critical in toad foraging success. Insects landing on rugose backgrounds were slower to leave, again increasing capture opportunities for toads. Thus, cane toads actively select backgrounds that maximize prey-capture opportunities, a bias driven by the ways that substrate attributes influence ease of prey detection and capture rather than by absolute prey densities.  相似文献   

10.
Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator–prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.  相似文献   

11.
The locomotion behavior of Pseudorasbora parva was observed in laboratory under various light intensity, turbidity, structural complexity and zooplankton size, focusing on swimming speed and time of search, approach, and attack. At low prey density, the satiation level affected the swimming speed only slightly. The search speed was nearly constant regardless of the satiation level to reduce the swimming energetic cost when opportunities of encountering prey were low. However, the attack and approach speeds slightly decreased with satiation. With increasing visual and swimming conditions, the approach speed increased markedly, but the search and attack speeds did not. Although the time for the approach and attack to capture a prey did not change much with decreasing swimming and visual conditions, the search time significantly increased to compensate for the decreased swimming speed.  相似文献   

12.
In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to determine the effects of exurban development and temperature on predator presence and the average number of days until eggs in an artificial nest were disturbed by predators. We baited artificial nests with quail (Excalfactoria chinensi) eggs and monitored them for 18 days. We used clay eggs, track plates, and motion-triggered cameras to detect and identify nest predators. The average number of days a nest was undisturbed decreased as mean temperature increased and, to a lesser extent, as the density of buildings increased. Nests on the ground were more often depredated than those in trees, likely due to increased predation by opossum (Didelphis virginiana) and other carnivores. Raccoons (Procyon lotor), opossums, corvids (Corvus brachyrhynchos and Cyanocitta cristata), chipmunks (Tamias striatus), black bears (Ursus americanus), and domestic cats (Felis catus) were the most commonly detected predators. Presence of these predators did not vary as a function of mean temperature. Domestic cats and corvids were detected more frequently in plots with high rather than low densities of buildings. Forest-interior specialists and Neotropical migrants often nest in cool, high-elevation areas with low housing density. These bird species, especially those that nest on the ground, may be most vulnerable to increased nest predation if temperature and exurban development increase at higher elevations as anticipated.  相似文献   

13.
J. Vidal 《Marine Biology》1980,56(2):135-146
Developmental time and stage duration for Calanus pacificus Brodsky and Pseudocalanus sp. and the rate of loss of body carbon by molting for C. pacificus were estimated for copepodite stages cultured under various combinations of phytoplankton concentration and temperature. Mean development time and stage duration for C. pacificus decreased hyperbolically with increasing food concentration, and the minimum time required for reaching a given stage decreased logarithmically with a logarithmic increase in temperature. Low temperature retarded the development of early stages proportionally more than that of late stages, and stage duration increased logarithmically with increasing body weight. Therefore, copepodite development was not isochronal. The rate of loss of body carbon by molting was small, ranging from 0.2 to 2% day-1. This rate increased hyperbolically with food concentration and was linearly related to the growth rate. The critical food concentration for the rates of development and molting increased with temperature and stage of development, but these rates were less dependent on food concentration than the growth rate. The development rate of Pseudocalanus sp. was higher than that of C. pacificus, and was less influenced by changes in food concentration and temperature. It is postulated that the inverse relationship between temperature and body size results from a differential effect of temperature and body size on the rates of growth and development. That is, with increasing body size the growth rate tends to become temperature-independent, but the development rate remains proportional to temperature. Thus, copepodites growing at low temperature can experience a greater weight increment between molting periods than individuals growing at high temperature, because the growth rate is similar at all temperatures but stage duration is longer at low temperature.Contribution No. 1128 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

14.
Parupeneus barberinus forages on benthic invertebrates using a wide range of foraging modes, including vigorous digging in the substratum, resulting in considerable disturbance to the benthos. Polychaetes were the most important prey item for all size classes, but fishes less than 120 mm total length consumed more small ostracods and nematodes than did larger fishes. Fishes greater than 120 mm total length consumed mostly bivalves, and fishes over 240 mm total length consumed mostly bivalves and crabs. A morphological examination of the feeding apparatus suggested that the size of important prey items consumed was determined by gape height and jaw width. Prey available to different size classes of fishes was determined by combining information on microhabitat use, foraging behaviours, and prey volumes in the substratum. Small fishes spent more time foraging on the reef flat and slope, compared with larger fishes that foraged mostly on the reef edge and base. In addition smaller fishes foraged mostly in the upper 2 cm of sediment, whereas larger fishes often foraged to depths of 10 cm. Selection ratios showed that different size classes of fishes selectively extracted different prey items from the substratum. Small fishes showed a preference for ostracods whereas large fishes selected for bivalves and crabs. Although polychaetes were the dominant prey item for all size classes, they were consistently selected against.  相似文献   

15.
16.
Most spionid polychaetes switch from deposit feeding to suspension feeding as current speed and the flux of suspended food increase. Growth rates of juvenile Polydora cornuta are strongly affected by flow and can be as rapid as 60% day−1 in moderate currents. Feeding palps that extend above the sediment–water interface during suspension feeding are especially vulnerable to sublethal predation, but individuals with damaged posteriors are also common. We performed a series of laboratory flume experiments to test the effects of sublethal tissue damage on the growth and regeneration rates of P. cornuta juveniles. Replicated experiments were conducted at three flow speeds in counter-rotating annular flumes containing field-collected sediment and a nonliving algal slurry as deposited and suspended food. In the first set of experiments, we removed 2, 1, or 0 of worms’ two feeding palps and measured the relative growth rates of worm bodies and palps after 3 days in the flumes. Worms that lost both palps grew significantly slower than the other two groups, but the growth rate of worms that had one undamaged palp was not significantly different from worms that had two undamaged palps. Faster flow speeds significantly increased rates of body growth, and there was a significant interaction between flow and the effect of palp loss. During the 3-day experiments, damaged palps fully regenerated and often grew larger than they were prior to being removed. Damaged palps also grew significantly faster than undamaged palps. The second set of experiments tested the effects of removing a worm’s posterior region (~18% of body volume). The growth rates of these damaged and undamaged worms did not differ significantly. By the end of a 3-day flume experiment, damaged worms had grown 6× larger than they were prior to the posterior damage. The rapid regeneration of damaged palps and posterior tissue in moderate flows that allow suspension feeding suggests that sublethal predation on spionids might be more frequent than previously estimated and will have little impact on the growth of juvenile recruits.  相似文献   

17.
The feeding behavior of adult Atlantic menhaden (Brevoortia tyrannus) upon 5 species of phytoplankton and 2 species of zooplankton has been studied. Four recognizable feeding stages which were a function of the concentration and size of the food particles were observed. During rapid feeding the fish swam at a constant speed for a prolonged period over a wide range of particle concentrations. Particle and food carbon-concentrations at the threshold for initiation and termination of feeding were inversely related to particle size. Carteria chuii (13.2 μ) was not grazed at a significant rate, while two-cell chains of Skeletonema costatum (16. 5 μ) were filtered from the water, indicating a minimum-size threshold for filtration of between 13 and 16 μ. The most rapid filtering rates were observed for the copepod Acartia tonsa ( \(\bar x\) volume swept clear = 24.8 l/fish/min). The maximum food-particle size acceptable to a menhaden appears to be between Acartia tonsa (1200 μ) and adult Artemia salina (10 mm). These results suggest that the large schools of menhaden found in Atlantic coastal waters could have a significant effect on the plankton, selectively grazing zooplankton, larger phytoplankton, and the longer chains of chain-forming diatoms.  相似文献   

18.
The average grazing and ingestion rates of all stages of the marine planktonic copepod Calanus helgolandicus (Calanoida) from nauplius stage IV to adults were measured experimentally at 15°C in agitated cultures. The chain-forming diatom Lauderia borealis and the unarmoured dinoflagellate Gymnodinium splendens were offered as food. The food concentrations were close to natural conditions and ranged from 36 to 101 g of organic carbon per liter. The medium body weights expressed in g of organic carbon of almost all larval stages raised at 49 g C/1 were identical with the weight of the same stages caught in the Pacific Ocean off La Jolla, California, USA. In a log-log system, grazing and ingestion rates increased almost linearly with increasing body weight. Grazing rates ranged from 4 to 21 ml/day/nauplius stage IV to 286 ml to 773 ml/day/female. Ingestion rates increased from 0.2 g to 0.8 g C/day/nauplius stage IV to 18 g to 69 g C/day/female. Grazing and ingestion rates per unit body weight decreased gradually with increasing body weight. The daily ingested amount of food decreased from 292 to 481% of the body weight (g C) of nauplius stage V to 28–85% of the body weight of adult females. Grazing and ingestion performances of all stages increased with increasing particle size. Grazing rates decreased and ingestion rates increased with increasing food concentrations. The published data on food intake of the different age groups of C. helgolandicus show that the young stages of herbivorous planktonic copepods can play a major part in the consumption of phytoplankton in the sea due to their high grazing and ingestion rates.  相似文献   

19.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

20.
J. Vidal 《Marine Biology》1980,56(3):195-202
Weight-specific rates of oxygen consumption of actively feeding copepodite stages ofCalanus pacificus Brodsky were measured under various combination of phytoplankton concentration and temperature. The rate decreased logarithmically with a logarithmic increase in dry body weight of copepods, and the relationship between these variables was described using a log-transformed allometric equation. The body-size dependence of the metabolic rate was independent of changes in food concentration and temperature, but the metabolic level increased linearly with a logarithmic increase in temperature and was not significantly affected by changes in food concentration. Respiration rates measured in this study forC. pacificus were about twice as high as rates reported for unfed closely related species of the same genus. An analysis of the metabolic cost of feeding processes suggests that metabolic models derived from feeding models may be of little ecological value at present.Contribution No. 1129 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号