首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
多环芳烃污染土壤的微生物修复技术   总被引:1,自引:1,他引:0  
对生物修复技术中的微生物进行了分类,并阐述了微生物生物降解土壤中多环芳烃(PAHs)的基本原理。在此基础上,分析了国内外微生物生物修复技术的发展概况,采用图示法重点综述了原位处理技术和非原位处理技术的工艺流程,并列举了相应的工程应用实例。  相似文献   

2.
Bioremediation of chlorinated solvents has been moving from an innovative to mainstream technology for environmental applications. Cometablism of chlorinated solvents by monooxygenase has been demonstrated for trichloroethylene (TCE). Cl‐out microbes combine the dehalogenation of PCE with the monooxygenase destruction of TCE to complete the PCE breakdown pathway. Underthe right conditions, cometabolic bioremediation can be cost effective, fast, and complete. Aerobic bioremediation can augment mass transfer technologies such as pump and treat or sparging/vapor extraction to improve their efficiency.  相似文献   

3.
Bioremediation has been used frequently at sites contaminated with organic hazardous chemicals where releases from processing vessels and the mismanagement of reagents and generated waste have contributed to significant impairment of the environment. At wood treater sites, process reagents such as pentachlorophenol (PCP), and creosote have adversely impacted the surrounding soil and groundwater. When PCP has been used at these sites, polychlorinated dibenzo‐p‐dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are typically found. Where creosote has been used as the wood preservative of choice, polynuclear aromatic hydrocarbons (PAHs) are commonly found. Many of these compounds are considered to be persistent, bioaccumulative, and toxic (PBT) and are particularly recalcitrant.  相似文献   

4.
Bioremediation is a proven alternative for remediating petroleum‐impacted soils at exploration and production (E&P) sites. Monitoring remediation performance can involve detection and quantification of biodegradation resistant compounds such as C3017α(H),21β(H)‐hopane, which requires the use of gas chromatography with mass spectrometry detection (GC/MS). Due to the remoteness of many E&P sites, this technology is not always available, and alternative methods are needed to provide reliable quantitative measurements of petroleum remediation efficiency. This study provides a detailed chemical characterization of lacustrine‐sourced crude oils and a technical basis for measuring the effectiveness of bioremediation efforts for soil impacted by those crudes. We show that the novel isoprenoid hydrocarbon botryococcane is relatively stable in lacustrine‐sourced crude oils compared with C3017α(H),21β(H)‐hopane under moderate biodegradation conditions generally observed in field samples. We have also demonstrated that, due to the stability and relatively elevated concentration of botryococcane in lacustrine oils, it can be reliably measured using the more cost‐effective and available GC/FID methodology, and thereby be used to monitor the progress of ongoing soil bioremediation activities at remote sites.  相似文献   

5.
6.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a consequence of various industrial processes which destabilizes the ecosystem. Bioremediation by bacteria is a cost‐effective and environmentally safe solution for reducing or eliminating pollutants in soils. In the present study, we artificially polluted agricultural soil with used automobile engine oil with a high PAH content and then isolated bacteria from the soil after 10 weeks. Pseudomonas sp. strain 10–1B was isolated from the bacterial community that endured this artificial pollution. We sequenced its genomic DNA on Illumina MiSeq sequencer and evaluated its ability to solubilize phosphate, fix atmospheric nitrogen, and produce indoleacetic acid, in vitro, to ascertain its potential for contribution to soil fertility. Its genome annotation predicted several dioxygenases, reductases, ferredoxin, and Rieske proteins important in the ring hydroxylation initiating PAH degradation. The strain was positive for the soil fertility attributes evaluated. Such combination of attributes is important for any potential bacterium partaking in sustainable bioremediation of PAH‐polluted soil.  相似文献   

7.
Enhanced biodegradation of creosote-contaminated soil   总被引:2,自引:0,他引:2  
Bioremediation, a viable option for treatment of cresote-contaminated soil, can be enhanced by the use of surfactant. A study was conducted to investigate the effect of a non-ionic surfactant, Triton X-100, on biodegradation of creosote-contaminated soil. Abiotic soil desorption experiments were performed to determine the kinetics of release of selected polynuclear aromatic hydrocarbon (PAH) compounds. Respirometric experiments were also conducted to evaluate the effect of nonionic surfactant on biodegradation. The N-Con system respirometer was used to monitor the oxygen uptake by the microorganisms. The abiotic experiments results indicated that the addition of surfactant to soil/water systems increased the desorption of PAH compounds. It was also observed that the desorption rate of PAH compounds depended on their molecular weight. The 3- and 4-ring PAH compounds showed higher and faster desorption rates than the 5- and 6-ring PAHs. The respirometric experiments indicated that an increase in soil contamination level from 112.5 to 771.8 mg/kg showed an increase in oxygen uptake. But for a soil contamination level of 1102.5 mg/kg, the oxygen uptake was similar to the contamination level of 771.8 mg/kg. This might be due to toxicity by the surfactant or the solubilized PAHs at high concentration or interference with contaminant transport into the cell or to reversible physical-chemical interferences with the activity of enzymes involved in the PAH degradation. The increase in PAH availability to the microorganisms in the aqueous phase produced an increase in oxygen consumption that is proportional to the biodegradation of organic compounds.  相似文献   

8.
Over the past 20 years, significant time and money have been spent on better understanding and successfully applying bioremediation in the field. The results of these efforts provide a deeper un‐derstanding of aerobic and anaerobic microbial processes, the microbial species and environ‐mental conditions that are desirable for specific degradation pathways, and the limitations that may prevent full‐scale bioremediation from being successfully applied in heterogeneous subsur‐face environments. Numerous substrates have been identified as effective electron donors to stimulate anaerobic dechlorination of chlorinated ethenes, but methods of delivering these sub‐strates for in situ bioremediation (direct‐push injections, slug injections, high‐pressure injections, fracture wells, etc.) have yet to overcome the main limitation of achieving contact between these substrates and the contaminants. Therefore, although it is important (from a full‐scale remedia‐tion standpoint) to select an appropriate, low‐cost substrate that can be supplied in sufficient quantity to promote remediation of a large source area and its associated plume, it is equally im‐portant to ensure that the substrate can be delivered throughout the impacted plume zone. Failure to achieve substrate delivery and contact within the chlorinated solvent plume usually re‐sults in wasted money and limited remediation benefit. Bioremediation is a contact technology that cannot be effectively implemented on a large scale unless a method for rapidly delivering the low‐cost substrate across the entire source and plume areas is utilized. Unfortunately, many cur‐rent substrate delivery methods are not achieving sitewide distribution or treatment of the sorbed contaminant mass that exists in the organic fraction of a soil matrix. The following discussion sum‐marizes substrate delivery using an aggressive groundwater recirculation approach that can achieve plumewide contact between the contaminants and substrate, thus accelerating dechlori‐nation rates and shortening the overall remediation time frame. © 2006 Wiley Periodicals, Inc.  相似文献   

9.
Tetrachloroethylene, also known as perchloroethylene or PCE, is one of the most difficult to treat chlorinated solvents when present in groundwater. Unfortunately, this elusive and recalcitrant compound is also the most commonly used dry cleaning solvent. As a result, releases of PCE at dry cleaning sites are somewhat common. Regenesis Bioremediation Products, of San Clemente, California, has developed Hydrogen Release Compound (HRC), which has been successfully used to promote bioremediation of PCE in groundwater. This product is directly injected into contaminated groundwater to speed up the natural attenuation of PCE through an anaerobic, natural process known as reductive dechlorination. A key benefit of HRC is its ability to slowly release hydrogen over extended periods of time. Reductive dechlorination relies on a steady source and readily available supply of electron donors as part of the degradation process. Hydrogen is one of the best electron donors available, and thus, the application of HRC significantly enhances the rate of PCE degradation. For dry cleaners, this technology can substantially reduce major design, capital, and operating costs, allowing the implementation of a low‐impact application and remediation solution. This article discusses the use of the HRC to remediate PCE contamination and presents the results of two specific HRC‐treated dry cleaner sites. © 2002 Wiley Periodicals, Inc.  相似文献   

10.
Bioremediation of 1,1,1‐trichloroethane (TCA) is more challenging than bioremediation of other chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). TCA transformation often occurs under methanogenic and sulfate‐reducing conditions and is mediated by Dehalobacter. The source area at the project site contains moderately permeable medium sand with a low hydraulic gradient and is approximately 0.5 acre. TCA contamination generally extended to 35 feet, with the highest concentrations at approximately 20 feet. The concentrations then decreased with depth; several wells contained 300 to 600 mg/L of TCA prior to bioremediation. The area of treatment also contained 2 to 30 mg/L of TCE from an upgradient source. Initial site groundwater conditions indicated minimal biotic dechlorination and the presence of up to 20 mg/L of nitrate and 90 mg/L of sulfate. Microcosm testing indicated that TCA dechlorination was inhibited by the site's relatively low pH (5 to 5.5) and high TCA concentration. After the pH was adjusted and TCA concentrations were reduced to less than 35 mg/L (by dilution with site water), dechlorination proceeded rapidly using whey (or slower with sodium lactate) as an electron donor. Throughout the remediation program, increased resistance to TCA inhibition (from 35 to 200 mg/L) was observed as the microbes adapted to the elevated TCA concentrations. The article presents the results of a full‐scale enhanced anaerobic dechlorination recirculation system and the successful efforts to eliminate TCA‐ and pH‐related inhibition. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Soil moisture content and temperature in a contaminated soil biopile equipped with immobilized microbe bioreactors (IMBRs) were optimized during ex situ bioremediation at a creosote‐contaminated Superfund site. Efficiency of remediation during warm summer months without soil‐temperature and moisture optimization was compared with that of cold winter months when corrective measures were applied. Significant reduction (35 percent) in total polycyclic aromatic hydrocarbons (PAHs) was observed, compared to 3.97 percent without corrective measures (p < 0.05). Kinetic rates (KRs) for total PAH removal were significantly enhanced from 3.93 to 50.95 mg/kg/day. KRs for removal of high molecular mass four‐to‐six‐ring PAHs were also significantly enhanced from 70.29 mg/kg/day to 97.45 mg/kg/day ( p < 0.05). Bioremediation of two‐ and three‐ring PAHs increased significantly from 15 percent to 40 percent. Benzo[a]pyrene toxicity equivalent mass (BaPequiv) was significantly reduced by 48 percent with KR of 0.47 mg/kg/day as compared to 22 percent with KR of 0.14 mg/kg/day (p < 0.05). Soil moisture content was enhanced from 15.7 percent to 41.4 percent. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
Petroleum oil is a major driver of worldwide economic activity, but it has also created contamination problems during the storage and refining process. Also, unconventional resources are natural resources, which require greater than industry‐standard levels of technology or investment to exploit. In the case of unconventional hydrocarbon resources, additional technology, energy, and capital have to be applied to extract the gas or oil. Bioremediation of petroleum spill is considered of great importance due to the contaminating effects on human health and the environment. For this reason, it is important to reduce total petroleum hydrocarbons (TPH) in contaminated soil. In addition, biosurfactant production is a desirable property of hydrocarbon‐degrading microorganisms. Seven strains belonging to Lysinibacillus sphaericus and Geobacillus sp were selected to evaluate their ability to biodegrade TPH in the presence of toxic metals, their potential to produce biosurfactants, and their ability to improve the biodegradation rate. The seven bacterial strains examined in this study were able to utilize crude petroleum‐oil hydrocarbons as the sole source of carbon and energy. In addition, their ability to degrade crude oil was not affected by the presence of toxic metals such as chromium and arsenic. At the same time, the strains were able to reduce toxic metals concentration through biosorption processes. Biosurfactant production was determined using the drop‐collapsed method for all strains, and they were characterized as both anionic and cationic biosurfactants. Biosurfactants showed an increase in biodegradation efficiency both in liquid minimal salt medium and landfarming treatments. The final results in field tests showed an efficiency of 93 percent reduction in crude oil concentration by the selected consortium compared to soil without consortium. The authors propose L. sphaericus and Geobacillus sp consortium as an optimum treatment for contaminated soils. In addition, production of biosurfactants could have an application in the extraction of crude oil from unconventional hydrocarbon resources. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The proper management of waste has several aspects: political, social, environmental, economic and technical. While the objectives of waste management policy differ little from country to country, the methods used to achieve them must be adapted to the prevailing circumstances in each. These factors include the availability of technical, economic, and human resources, and the competition that exists for them from other demands of national policy, especially in developing countries.There is no single correct method to achieve proper waste management. Nevertheless there are common needs that must be addressed by all nations that wish to manage their wastes better. These needs will include: adequate knowledge of the types of waste to be disposed of, how much there is, where it arises, who produces it, and what happens to it. It is also necessary to forecast how the present circumstances will change, and to identify appropriate methods to ensure that what should be done with waste is done. As forecasting the nature and quantity of waste that will arise in the future is difficult, an administrative mechanism is needed to ensure the regular supply of up-to-date data.In any city it is possible to equate the standard of waste management with the overall “standard of living” enjoyed by its inhabitants. Rising expectations of environmental improvement mean that disposal facilities must be appropriately designed, engineered and managed. They must also be planned for the future. The preparation of a thorough and effective plan is a lengthy task if done manually, and the discussion introduces the benefits that can be obtained from the use of computer models to assist, but not replace, human involvement in the preparation of a plan. Brief reference will be made to waste management models already used by waste managers to produce and update plans.  相似文献   

14.
The draft legislation on e-waste prepared by the Chinese national government assigns management responsibility to local governments. It is an urgent task for the municipal government to plan an effective system as soon as possible to divert the e-waste flow from the existing informal e-waste recycling processes. This paper presents a case study implemented in Beijing, the capital city of China, with the purpose of predicting the amount of obsolete equipment for five main kinds of electronic appliances from urban households and to analyse the flow after the end of their useful phase. The amount to be handled was 885,354 units in 2005 and is predicted to double by 2010. Due to consumption growth and the expansion of urbanization it is estimated that the amount will increase to approximate 2,820,000 units by 2020: 70% of the obsolete appliances will be awaiting collection for possible recycling, 7% will be stored at the owner's home for 1 year on average and 4% will be discarded directly and enter the municipal solid waste collecting system. The remaining items will be reused for about 3 years on average after the change of ownership. The results of this study will assist the waste management authorities of Beijing to plan the collecting system and facilities needed for management of e-waste generated in the near future.  相似文献   

15.
Phytoremediation has received attention recently, due to promising field test results that indicate potential cost savings when compared with conventional treatments. The various plant-based technologies that comprise the category phytoremediation have some similarities, many differences, and different possible applications. Each application will be site specific and must be evaluated on a case-by-case basis by a regulator. A treatment remedy must be “protective of human health and the environment, maintain protection over time, and minimize untreated waste” (40 CFR 300.430). The regulator's view of phytoremediation is the same as for any proposed remediation technology and asks the basic questions, “Why do you think this technology will decrease risk to human health and the environment, and how will you show that it works?” This article reviews issues related to acceptance of the technology and discusses some of the regulations that may be applicable to phytoremediation.  相似文献   

16.
It is postulated that the current “garbage crisis” is due to a shortage of disposal capacity, not to burgeoning amounts of municipal solid waste (MSW). In support of this, trends in the quantity and composition of MSW, methods of waste reduction, recycling and growth of waste-to-energy capacity are examined to gain insight as to the future course of MSW management in the U.S. over about the next 15 plus years. This is the likely time to install new disposal capacity if pending legislative proposals are passed, that would enable states that provide their own disposal to ban wastes from other states.A new term, the “intensity of waste generation”, is proposed and illustrated, analogous to the intensity of mineral usage. The intensity is decreasing, implying that it is unlikely that waste generation will grow at rates projected by extrapolation or simple macroeconomic assumptions. Some other conclusions are: per capita MSW generation was nearly statistically constant from 1970 to 1984; the content of most forms of packaging in MSW are decreasing; packaging decreases the amount of food residues in MSW; and proposed national recycling targets of about 25% or more are not likely to be achieved, in part because of changes in the composition of MSW. Coupled with likely shortages of labor to process separated waste, it is forecast that there will be some future time when people will not think source separation is worth the bother and recycling will decrease. The future growth of waste-to-energy capacity is projected by assuming that a city will install capacity when others have done so, which leads to a simple quantitative model. The likely effects of impending landfill and incineration regulations are addressed.  相似文献   

17.
Combining septic tank effluent and animal wastes (mixed wastes) for eventual application to land is being proposed as an alternative wastewater disposal system. Both types of waste are spread on land separately, and private practice may be to mix and spread them together, but in most of the United States mixing of these wastes for land disposal is illegal. No research has been done to assess the hazards associated with spreading mixed wastes on land. The concern is with the impact on public health of adding septic tank effluent to animal wastes for disposal as animal wastes. The effects of pathogens already present in animal waste are presumably allowed for in current U.S. regulations.Pathogens in mixed wastes include viruses, bacteria and parasites. Viruses are not always present in on-site waste disposal systems, but when present are in high numbers. Most viral particles will pass through the septic tank and will remain viable. Transmission will be prevented if these particles are retained in soil or other solids until any of several factors deprive them of infectivity. As animals are the chief reservoir of most enteric bacteria that are pathogenic to man, no additional hazards from bacteria are expected in a mixed waste system. Some parasite eggs and cysts will settle into the bottom of the septic tank, but significant numbers will pass through and will remain viable. Retention with solids will minimize transmission through food and water. In all instances it is important to match land use and waste disposal carefully.  相似文献   

18.
Most standard oil spill modeling programs neglect the effects of Langmuir circulation (LC). The authors have identified three areas where LC effects may be important in spill behavior. These three areas are spreading, dispersion, and transport. LC will cause the slick to break into windrows when the wind-row formation velocity is comparable to Fay and other spreading forces. Oil dispersion is likely to be enhanced, with droplets carried to greater depth and distributed non-uniformly. Transport velocities for different parts of the slick will vary because of LC, a phenomenon that also occurs because of other factors.  相似文献   

19.
蔡凯武  刘春 《化工环保》2021,40(6):567-572
本文在持续跟踪环保型塑料产业动态的基础上,从原料开发、产品设计、废弃物回收利用等方面,综述了生物基和石油基环保型塑料产业的最新进展,旨在为塑料研发人员和相关产业工作者开拓思路。指出:环保型塑料是未来塑料产业发展的重要方向,非环保型塑料的市场份额将逐步被环保型塑料占据,最后稳定在较低的水平上。  相似文献   

20.
Innovative cities are essential for the economic growth and development of countries. At the same time, however, social and environmental problems related to city growth can be serious threats to the full realisation of the socio-economic contribution that cities can make. City environments thus often provide both new problems and the creative and diverse environments, which make it possible to solve them. The question of whether or not sustainable development is possible largely will be answered in cities. This is also the case for problems related to waste management. Landfills may be located in the countryside, but if a country is to reduce environmental costs, the results will rest on the innovation power of cities. In this paper it is argued that the notion of a 'system of innovation' is helpful in understanding the factors that shape the processes of innovation and that determine the extent to which environmental problems may be solved. In this context, institutional innovation and political innovation as compared to technical innovation are of special importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号