首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory experiment was conducted to test whether anti-predator responses could be induced in the green mussel, Perna viridis, on exposure to waterborne cues from two predators, the muricid gastropod, Thais clavigera, and the portunid crab, Thalamita danae, and from damaged conspecifics. There were five treatments in this study. Aquaria of two treatments housed either Thalamita danae or Thais clavigera. Another three treatments housed only intact mussels, broken and intact mussels, or no mussels. No significant differences were found among these five treatments in final shell weight and tissue dry weight. Induced defensive responses were predator-specific. Experimental mussels exposed to waterborne cues of T. clavigera had a higher percentage increase in shell length, height and width, whereas those exposed to waterborne cues of T. danae had a higher percentage increase in shell width and height. Mussels raised in the presence of crabs developed thicker shell at the umbo and lip margin, whereas mussels raised in the presence of gastropods had thicker shell lip. Predator preference for mussels from the control group and for those pre-exposed to waterborne cues of either of the predators was studied. T. clavigera preferentially selected mussels from the control group, whereas no prey preference was found for T. danae, although shell breaking time for mussels exposed to a crab was longer than that for the control. While the present results should be viewed with caution in the absence of a dietary control, this was the first time that prey handling was shown to be affected by defensive changes in the morphology of mussels.Communicated by T. Ikeda, Hakodate  相似文献   

2.
Predators such as crabs, whelks, and sea stars attack their bivalve prey in different ways, and predator-induced defenses are an important means of protection. The degree to which induced defenses are specific to different predators, however, remains largely unknown. In laboratory experiments (June to August 1998), we raised mussels (Mytilus edulis L.) in the presence of a drilling predator [the whelk Nucella lapillus (L.)] or a crushing predator [the crab Carcinus maenas (L.)] to determine whether induced changes in prey shell thickness, size, or shape occurred and whether changes were predator-specific. Over a 2 month period, juvenile mussels were exposed to waterborne cues from actively feeding crabs or whelks. Mussels produced thicker shell lips in response to both predators relative to control mussels raised in their absence, and the difference was significantly greater in response to whelks than to crabs. Mussels exposed to whelks showed significantly smaller increases in shell length and width and total wet weight than did mussels exposed to crabs. Thus, there may be a trade-off between shell thickness and linear shell growth and a potential delay in attaining a size refuge from predation. Received: 4 August 1999 / Accepted: 31 January 2000  相似文献   

3.
M. Mascaró  R. Seed 《Marine Biology》2001,139(6):1135-1145
Information concerning the way juvenile crabs choose their diet from a variety of prey types can be useful for a better understanding of community dynamics, as well as for the adequate management of natural resources. Prey size and species selection by juvenile Carcinus maenas (15-35 mm carapace width, CW) and Cancer pagurus (20-40 mm CW) feeding on four bivalves of contrasting shell morphology were investigated. When offered a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas, and Cerastoderma edule presented individually, crabs generally showed evidence of size-selective predation. Cancer pagurus selected larger mussels relative to the size of their chelae (relative prey size, RPS) than did Carcinus maenas of similar and even larger carapace width. However, the RPS of selected O. edulis and Cerastoderma edule were similar for all crabs, suggesting that certain prey features constitute effective barriers even to the powerful chelae of Cancer pagurus. When offered a wide size range of mussels and oysters simultaneously, all crabs consistently selected mussels. When offered O. edulis and Crassostrea gigas, crabs consumed both these oyster species in similar numbers. Carcinus maenas consumed similar numbers of mussels and cockles; Cancer pagurus, however, showed no preference for either prey in the smaller size classes but selected more mussels than cockles as prey increased in size. Although previous studies report that adult Carcinus maenas select prey species according to their profitability (amount of food ingested per unit of handling time, milligrams per second), consumption rates of the size classes of prey selected by juvenile shore crabs did not always parallel prey value. Although variations in crab strength can account for many of the differences between the foraging strategy of juvenile and adult C. maenas, our results suggest that juvenile crabs are less species selective than adults as a result of the restrictions imposed on small individuals that have limited access to larger prey.  相似文献   

4.
Adult horseshoe crabs Limulus polyphemus (L.) feed on a wide variety of infaunal and epifaunal invertebrates during their spring spawning migration in Delaware Bay, New Jersey, USA. Comparison of the gut contents with estimates of available prey showed that the most abundant potential prey item, the bivalve Gemma gemma, was avoided. The thinner shelled but comparatively scarce clam Mulinia lateralis was a preferred prey item. In the laboratory, crabs fed on G. gemma when it was the only available item but not when M. lateralis or soft-shell clams, Mya arenaria, were offered in conjunction. Large M. lateralis (>10mm) were preferred to small M. lateralis; there was no discrimination between M. lateralis and M. arenaria of the same size. Male and female horseshoe crabs had similar gut contents and laboratory feeding preferences, despite the fact that females are larger than males. Crabs spawning later in the summer contained more food than did crabs collected at the peak of spawning activity.  相似文献   

5.
When feeding on blue mussels (Mytilus edulis), oystercatchers (Haematopus ostralegus) either stab into the mollusc’s gaping valves or hammer through its dorsal or ventral shell. Whilst the selectivity of hammering and stabbing oystercatchers for specific prey morphologies has been well studied, the way in which the effects of environment on M. edulis morphology can in turn affect feeding methods of H. ostralegus is very poorly understood. Based on morphological analyses on randomly selected shells from three intertidal zones, this study failed to detect differences in morphology or distribution of dorsally and ventrally hammered shells but confirms the finding of previous authors that hammering oystercatchers select thinner mussels than stabbing birds. Additionally, we show that this difference in optimal prey morphology can lead to spatial patterns in oystercatcher feeding behaviour. Whilst at the low intertidal and higher mid intertidal zones, characterised by comparatively thick shells, most empty shells had apparently been stabbed, hammering was the dominant feeding behaviour at the lower mid intertidal zone, where shells were thinner. Preference of hammering birds for smaller mussels was not ubiquitous. Sagittal shell shape was predominantly influenced by allometric growth effects and had only minor effect on prey selection. All oystercatchers preferred less inflated mussels, with the degree of shell inflation gradually increasing with higher intertidal elevation. Our results illustrate the importance of small-scale patterns in prey ecophenotypes in determining the distribution and feeding dynamics of wading birds.  相似文献   

6.
The abundance of nearly one-quarter of the world's shorebird species is declining. At the same time, the number of non-native species in coastal ecosystems is increasing rapidly. In some cases, non-native species may affect negatively the abundance and diversity of shorebird prey species. We conducted an experimental study of the effects of the introduced European green crab (Carcinus maenas) on prey consumption by wintering Dunlin (Calidris alpina) in a central California estuary. We placed green crabs and Dunlin sequentially in field enclosures and measured changes in density of benthic invertebrate prey (e.g. polychaetes and small clams), Dunlin biomass, and gut contents of both Dunlin and crabs and observed foraging behavior of Dunlin. Green crabs significantly affected Dunlin foraging success through both direct and indirect multitrophic linkages. In enclosures with high densities of green crabs, crab foraging reduced the availability of polychaetes, and Dunlin consumed significantly fewer polychaetes compared with Dunlin in enclosures without crabs. High densities of green crabs were also associated with increased availability of small clams. Dunlin consumed significantly more small clams compared with Dunlin in enclosures without crabs. In our literature survey of studies of effects of non-native invasive species on shorebirds, we found three prior experiments that addressed the effect of non-native invasive species on shorebirds. Results of two of these studies showed positive direct effects of non-native invertebrates on shorebirds, 1 showed negative direct effects of a non-native plant on shorebirds through habitat conversion, and none showed indirect effects of non-native invertebrates. We suggest future management of shorebirds explicitly examine how non-native marine species, particularly invertebrates, directly and indirectly affect shorebirds.  相似文献   

7.
J. Lin 《Marine Biology》1990,107(1):103-109
Mud crab (Panopeus herbstii H. Milne Edwards) predation on Atlantic ribbed mussels (Geukensia demissa Dillwyn) was studied by a series of laboratory and field experiments at two sites at Morehead City, North Carolina, USA from 1987 to 1989. Tidal elevation had no effect on predation intensity, although mud crabs were active only when they were submerged. Horizontal distance from the water-marsh edge significantly affected mussel mortality in one of two winter experiments, despite the occurrence of virtually all the crabs at the marsh edge. Of the juvenile mussels attached to adult mussels, those totally buried in the sediment suffered mortality from mud crab predation at a rate not detectably different from those exposed above the surface. Juveniles attached to adult conspecifics, however, experienced significantly less mortality than those attached to oysters. Interestingly, the two groups of mussels (those attached to conspecifics and those attached to oysters) display shell morphological dimorphism. The more oblate shells of the mussels attached to oysters as compared to those attached to conspecifics might be induced by the higher predation rate. Alternatively, slimmer shells from individuals attached to conspecifics may be the result of living within physically compact mussel clumps.Please address all correspondence and requests for reprints to Dr Lin at his present address: Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland 21037, USA  相似文献   

8.
Suspension-feeding molluscs are important members of coastal communities and a large body of literature focuses on their feeding processes, including the efficiency of particle capture. Some molluscs, such as bivalves, capture individual picoplankton cells (0.2–2.0 μm) with a retention efficiency of less than 50%, leading to the assumption that such particles are not an important food resource. Picoplankton, however, are often concentrated in particle aggregates of much larger size. This study investigates the ability of suspension feeders to ingest picoplankton-size particles (0.2–2.0 μm) bound in marine aggregates. We fed clams (Mercenaria mercenaria), mussels (Mytilus edulis), oysters (Crassostrea virginica), scallops (Argopecten irradians) and slipper snails (Crepidula fornicata) 1.0- and 0.5-μm fluorescent particles (either polystyrene beads or bacteria) that were (1) dispersed in seawater, or (2) embedded within laboratory-made aggregates. Dispersed 10-μm beads were also delivered so that feeding activity could be determined. Ingested fluorescent particles were recovered in feces or isolated digestive glands and quantified. Results indicate that aggregates significantly enhance the ingestion of 1.0- and 0.5-μm beads by all species of bivalves, and enhance the ingestion of bacteria (greatest cell dimension ca. 0.6 μm) by all suspension feeders examined. Differences among species in their ability to ingest aggregates and picoplankton-size particles, however, were evident. Compared to mussels and clams, scallops and oysters ingested fewer aggregates with 1.0-μm beads or bacteria, and slipper snails ingested the most dispersed beads and bacteria. These differences may be a consequence of variations in gill structure and mechanisms of particle processing. Our data demonstrate that suspension feeders can ingest picoplankton-size particles that are embedded within aggregates, and suggest that such constituent particles may be an important food resource.  相似文献   

9.
Reef crabs, Ozius truncatus H. Milne-Edwards 1834, and gastropods, Bembicium nanum (Lamarck, 1882) and Nerita atramentosa Reeve, 1855, were collected from a South Australian rocky intertidal platform in April 1981. Laboratory experiments were conducted to determine (1) the size of prey chosen, and (2) the energy gained by the reef crabs feeding on B. nanum and N. atramentosa. The time taken to break open and consume prey increased exponentially with prey shell height. Crabs with larger master claws had shorter handling times for a given prey size. When offered a range of prey sizes, crabs selected prey of a certain size, well below the maximum prey size that they could handle. The mean prey size selected by crabs did not concide with the size predicted to yield the maximum rate of energy gain. For example, one reef crab preferred B. nanum 5 to 8 mm in size, but the size class predicted to yield the greatest energy gain was 4 to 4.9 mm. The results of the laboratory prey-choice experiments are discussed in relation to the shore-level size gradients of B. nanum and N. atramentosa.  相似文献   

10.
Wave action is known to influence the abundance and distribution of intertidal organisms. Wave action will also determine the duration and suitability of various foraging windows (high-tide and low-tide, day and night) for predation and can also affect predator behaviour, both directly by impeding prey handling and indirectly by influencing prey abundance. It remains uncertain whether semi-terrestrial mobile predators such as crabs which can access intertidal prey during emersion when the effects of wave action are minimal, are influenced by exposure. Here, we assessed the effect of wave action on the abundance and population structure (size and gender) of the semi-terrestrial intertidal crab Pachygrapsus marmoratus on rocky shores in Portugal. The activity of P. marmoratus with the tidal cycle on sheltered and exposed shores was established using baited pots at high-tide to examine whether there was activity during intertidal immersion and by low-tide searches. Because prey abundance varies along a wave exposure gradient on most Portuguese shores and because morphology of crab chelipeds are known to be related to diet composition, we further tested the hypothesis that predator stomach contents reflected differences in prey abundance along the horizontal gradient in wave exposure and that this would be correlated with the crab cheliped morphology. Thus, we examined phenotypic variation in P. marmoratus chelipeds across shores of differing exposure to wave action. P. marmoratus was only active during low-tide. Patterns of abundance and population structure of crabs did not vary with exposure to wave action. Stomach contents, however, varied significantly between shores of differing exposure with a higher consumption of hard-shelled prey (mussels) on exposed locations, where this type of prey is more abundant, and a higher consumption of barnacles on sheltered shores. Multivariate geometric analysis of crab claws showed that claws were significantly larger on exposed shores. There was a significant correlation between animals with larger claws and the abundance of mussels in their stomach. Variation in cheliped size may have resulted from differing food availability on sheltered and exposed shores.  相似文献   

11.
Predicting outcomes of species introductions may be enhanced by integrating life-history theory with results of contained experiments that compare ecological responses of exotic and analogue native species to dominant features of the recipient environment. An Asian oyster under consideration for introduction to the Chesapeake Bay, USA, the rapidly growing Suminoe oyster (Crassostrea ariakensis), may not be as successful an invader as its r-selected life history suggests if the trade-off for rapid growth and maturation is lower investment in defenses against blue crab (Callinectes sapidus) predation than the native Eastern oyster (Crassostrea virginica). In laboratory trials, blue crabs simultaneously offered equal numbers of Suminoe and Eastern oysters consumed more nonnatives, irrespective of whether the crabs had previous experience with Suminoe oysters as prey. Satiated blue crabs consumed nearly three times as many Suminoe oysters as Eastern oysters of 25-mm shell height, and eight times as many of 35-mm shell height. Despite blue crabs consuming small (30 mm) Suminoe oysters at twice the rate of large (40 mm) Suminoe oysters, when 40-mm Suminoe were paired with 30-mm Eastern oysters, seven times as many of the larger (Suminoe) oysters were consumed. The greater susceptibility of C. ariakensis than C. virginica to blue crab predation appears to be based upon the biomechanics of shell strength rather than active selection of a more attractive food. Much less force was required to crush shells of Suminoe than Eastern oysters of similar shell height. Tissue transplant experiments demonstrated greater predation on oyster tissues in weaker C. ariakensis shells independent of tissue identity, and duration of handling time before rejection of C. virginica exceeded the time to crush C. ariakensis. These results, coupled with the present importance of blue crab predation in limiting recovery of native Eastern oysters, imply a role for blue crabs in inhibiting Suminoe oysters, if introduced, from attaining high adult densities required to restore a fishery, provide appreciable reef habitat, and reduce turbidity through filtration. Thus, in high-predation environments, allocation of resources to rapid growth and development rather than to predation defenses reflects a life-history trade-off that may promote early stages of invasion, yet prevent attainment of dense adult populations.  相似文献   

12.
The feeding ecology of Sesarma plicata (Grapsidae: Sesarminae), the most abundant crab species in a mangrove forest dominated by Kandelia candel at Jiulongjiang Estuary, China, was investigated through field and laboratory experiments. Feeding preference and consumption rates were determined on mature, senescent and decomposed leaves of Kandelia candel, Bruguiera gymnorrhiza and Aegiceras corniculatum. In the laboratory, S. plicata preferred leaves of K. candel over those of B. gymnorrhiza and A. corniculatum, and consumed significantly more decomposed leaves than mature and senescent ones, irrespective of crab size. Field experiments with limited power failed to reveal detectable species preferences despite more consumption of K. candel, but decomposed leaves of each species were again preferred. Leaf characteristics associated with preference changed with plant species and leaf state. Low tannins and high water content characterized the preference for decomposed state of leaves. Species preference was significantly and negatively related to crude fibers and C:N ratios for mature leaves, and crude fiber for senescent leaves, but significantly and positively related to water content for decomposed leaves. Leaf consumption rates averaged for all leaf categories from laboratory no-choice feeding experiments were 0.101, 0.055 and 0.017 gDW ind−1 d−1 for large, medium and small crabs, respectively. In this forest, mean density of S. plicata was 20.5 ind m−2 as assessed by a manual catching method. Leaf litter removal rate during neap tides by sesarmid crabs was about 1.33 gDW m−2 d−1 in April 2006. The leaves removed by crabs were grazed on the sediment surface or taken into crab burrows, shredded and stored before being eaten.  相似文献   

13.
Pagurus longicarpus hermit crabs depend on empty gastropod shells for protection against predation. Hermit crabs avoid gastropod shells in which holes have been drilled by naticid gastropods, and hermit crabs forced to occupy drilled shells are more vulnerable to predation by green crabs, Carcinus maenas. In this study, we examined the effect of predator cues on P. longicarpus shell investigation behavior and shell choice. In paired laboratory shell choice trials, we examined hermit crab response to green crab chemical cues. We compared hermit crabs from two sites differing in the percentage of Littorina littorea shells with drill holes. The percentage of time hermit crabs spent occupying intact shells increased significantly in the presence of predator cues. The effect of predator cues on the amount of time hermit crabs spent investigating shells differed between individuals from the two sites. Predator effluent had a marginal effect on the proportion of hermit crabs initially choosing intact shells and within 15 min most hermit crabs in both treatments occupied intact shells due to shell switching. These results indicate that predation cues alter P. longicarpus shell choice behavior favoring intact shells, which provide greater protection. In summary, predation appears to be a key factor influencing hermit crab shell selection behavior.Communicated by T. Czeschlik  相似文献   

14.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

15.
Diet selection of the Chilean stone crab Homolaspis plana (Milne-Edwards, 1834) was studied using the optimal foraging theory to explain its feeding strategy. The hypothesis that H. plana prefers prey species of the highest prey (“energy”) value was experimentally tested on adult crabs during 1980–1981. Food value was defined as the ratio between caloric content and consumption time, according to energy maximization as the criterion to optimize diet selection. Diet composition of adult crabs from the littoral of Valparaíso (Chile) and ingestion under laboratory conditions were studied to determine type, size and quantity of food to be offered in experiments on prey-type preference. Porcellanid crabs, barnacles and bivalves were the most frequently occurring items in stomachs from in situ conditions. In the aquaria, daily ingestion rates were quite variable among crabs and among days. H. plana showed no size preference for molluscs (Tegula atra, Semimytilus algosus) but preferred larger sizes of porcellanids. The order of preference for prey type was S. algosus>T. atra> porcellanids. However, no differences between their energy values were found and, therefore, the optimal foraging hypothesis was rejected. By extension, the energy maximization criterion alone may not explain the diet selection of H. plana under experimental conditions.  相似文献   

16.
The distribution of the introduced European green crab, Carcinus maenas, was investigated in the central California embayments of Bodega Bay Harbor (BBH), Tomales Bay, and Bolinas Lagoon using baited traps and snorkel surveys. Adult green crabs were very spatially limited in all three embayments and occurred primarily in warm, shallow areas that lacked large native Cancer spp. crabs. The green crabs that were found in closest proximity to populations of Cancer spp. exhibited high levels of limb damage and loss; damage was strongly correlated with low ratios of intertidal area: edge, indicative of narrow areas of intertidal that are more easily accessed by large Cancer spp. moving up to forage during periods of tidal inundation. Up to 70% of the green crabs tethered in areas of BBH that are utilized by Cancer spp. experienced limb loss, while those tethered in the marsh, where there are no Cancer spp., were undamaged. The results suggest that the potential distribution of green crabs in the northeastern Pacific will be far less than has been predicted, and that their impacts may be largely attenuated through predation by and competition with native crab species.  相似文献   

17.
Management agencies are considering introducing the Suminoe oyster Crassostrea ariakensis into Chesapeake Bay, USA. It is unknown if the growth of feral populations of this non-native oyster would be regulated by the same predators that once controlled the abundance of the native eastern oyster C. virginica. In laboratory studies, we compared the relative susceptibility of juvenile diploids (shell height < 25 mm) of both oyster species to invertebrate predators of eastern oyster juveniles. Predators included four species of mud crabs [Rhithropanopeus harrisii (carapace width 7–11 mm), Eurypanopeus depressus (6–21 mm), Dyspanopeus sayi (8–20 mm), and Panopeus herbstii (9–29 mm)], the blue crab Callinectes sapidus (35–65 mm), and two sizes of polyclad flatworms (Stylochus ellipticus and possibly Euplana gracilis; planar area ≲5 mm2 and ∼14 to 88 mm2). All four species of mud crab and the blue crab preyed significantly (ANOVA, P ≤ 0.05) more on C. ariakensis than on C. virginica, but predation by flatworms of both sizes did not differ significantly between oyster species. The greater susceptibility of C. ariakensis to crab predation was likely due to its shell compression strength being 64% lower than that of C. virginica (P = 0.005). To test for predator-induced enhancement of shell strength, we held oysters of both species for 54 days in the presence of, but protected from, C. sapidus and R. harrisii. Crabs were fed congeneric oysters twice weekly within each aquarium. Compared to controls, shell strength of C. virginica exposed to R. harrisii increased significantly (P < 0.043), as did shell strength of both oyster species exposed to C. sapidus (P < 0.01). Despite the changes in shell strength by both oyster species in the presence of C. sapidus, the shell of C. ariakensis remained 57% weaker than C. virginica. We conclude that, because C. ariakensis exposed to predators continued to have a weaker shell relative to C. virginica, the natural suite of crab and flatworm predators in Chesapeake Bay will likely serve to control the abundance of feral C. ariakensis. We caution that the situation in the natural environment may be sufficiently different in some locations that C. ariakensis may be able to compensate for its greater vulnerability to crab predation and hence become a nuisance species.  相似文献   

18.
Smee DL  Weissburg MJ 《Ecology》2006,87(6):1587-1598
The lethal and nonlethal impacts of predators in marine systems are often mediated via reciprocal detection of waterborne chemical signals between consumers and prey. Local flow environments can enhance or impair the chemoreception ability of consumers, but the effect of hydrodynamics on detection of predation risk by prey has not been investigated. Using clams as our model organism, we investigated two specific questions: (1) Can clams decrease their mortality by responding to predators? (2) Do fluid forces affect the ability of clams to detect approaching predators? Previous research has documented a decrease in clam feeding (pumping) in response to a neighboring predator. We determined the benefits of this behavior to survivorship by placing clams in the field with knobbed whelk or blue crab predators caged nearby and compared mortality between these clams and clams near a cage-only control. Significantly more clams survived in areas containing a caged predator, suggesting that predator-induced alterations in feeding reduce clam mortality in the field. We ascertained the effect of fluid forces on clam perception of predators in a laboratory flume by comparing the feeding (pumping) behavior of clams in response to crabs and whelks in flows of 3 and 11 cm/s. Clams pumped significantly less in the presence of predators, but their reaction to blue crabs diminished in the higher velocity flow, while their response to whelks remained constant in both flows. Thus, clam reactive distance to blue crabs was affected by fluid forces, but hydrodynamic effects on clam perceptive distance was predator specific. After predators were removed, clams exposed to whelks took significantly longer to resume feeding than those exposed to blue crabs. Our results suggest that prey perception of predators can be altered by physical forces. Prey detection of predators is the underlying mechanism for trait-mediated indirect interactions (TMIIs), and recent research has documented the importance of TMIIs to community structure. Since physical forces can influence prey perception, the prevalence of TMIIs in communities may, in part, be related to the sensory ability of prey, physical forces in the environment that impact sensory performance, and the type of predator detected.  相似文献   

19.
The preference of the hermit crab, Calcinus californiensis, among six species of shells, was tested by two different experiments. The first experiment used pair-wise trials, analyzing the preference by Chi-square tests using two different constructions of the null hypothesis. One hypothesis was based on a no-preference among shell species, the second on comparing the number of crabs changing for a particular shell species when two options were given versus the changing when no options were offered. The second experiment was a multiple-alternative test based on a rank ordering of the shell preference. This method has both statistical and resource-saving advantages over the traditional pair-wise comparisons. The sequence of shell preference was similarly independent of the procedure used. The preferred shell species are heavy and might be associated with hydrodynamic advantages and with the protection against predation. The shell preference matches with the pattern of shell occupancy indicating that the shell use in nature is determined by the crab’s preference. The information generated may be used for further research on shell preference as a methodological alternative.  相似文献   

20.
The polyclad Stylochus mediterraneus Galleni has been found associated with the mussel Mytilus galloprovincialis Lmk., on which it feeds. Polyclads allowed to feed freely on groups of mussels of different sizes preyed mainly on small mussels <25 mm in length. The predation rate (number of mussels eaten per no. of polyclads per no. of days) ranged between 0.07 and 0.33. The average amount of food ingested by 1 polyclad feeding on mussels 16 to 25 mm or 26 to 35 mm in length was 7.1 and 11.2 (dry weight) mg per day, respectively. Before penetrating the mussels, the worm first straddles the valves at the posterior edge of the shell and then, after having digested the posterior adductor muscle, removes and swallows the soft parts of the prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号